www.Educate-UK.net

A-level MATHEMATICS 7357/3

Paper 3

Mark scheme

June 2024

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

No student should be disadvantaged on the basis of their gender identity and/or how they refer to the gender identity of others in their exam responses.

A consistent use of 'they/them' as a singular and pronouns beyond 'she/her' or 'he/him' will be credited in exam responses in line with existing mark scheme criteria.

Further copies of this mark scheme are available from aqa.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2024 AQA and its licensors. All rights reserved.

Mark scheme instructions to examiners

General

The mark scheme for each question shows:

- the marks available for each part of the question
- the total marks available for the question
- marking instructions that indicate when marks should be awarded or withheld including the principle on which each mark is awarded. Information is included to help the examiner make his or her judgement and to delineate what is creditworthy from that not worthy of credit
- a typical solution. This response is one we expect to see frequently. However credit must be given on the basis of the marking instructions.

If a student uses a method which is not explicitly covered by the marking instructions the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

Key to mark types

M	mark is for method	
R	mark is for reasoning	
Α	mark is dependent on M marks and is for accuracy	
В	mark is independent of M marks and is for method and accuracy	
Е	mark is for explanation	
F	follow through from previous incorrect result	

Key to mark scheme abbreviations

CAO	correct answer only
CSO	correct solution only
ft	follow through from previous incorrect result
'their'	indicates that credit can be given from previous incorrect result
ISW	Ignore subsequent working
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
NMS	no method shown
PI	possibly implied
sf	significant figure(s)
dp	decimal place(s)

AS/A-level Maths/Further Maths assessment objectives

AO		Description					
	AO1.1a	Select routine procedures					
AO1	AO1.1b	Correctly carry out routine procedures					
	AO1.2	Accurately recall facts, terminology and definitions					
	AO2.1	Construct rigorous mathematical arguments (including proofs)					
	AO2.2a	Make deductions					
AO2	AO2.2b	Make inferences					
AUZ	AO2.3	Assess the validity of mathematical arguments					
	AO2.4	Explain their reasoning					
	AO2.5	Use mathematical language and notation correctly					
	AO3.1a	Translate problems in mathematical contexts into mathematical processes					
	AO3.1b	Translate problems in non-mathematical contexts into mathematical processes					
	AO3.2a	Interpret solutions to problems in their original context					
	AO3.2b	Where appropriate, evaluate the accuracy and limitations of solutions to problems					
AO3	AO3.3	Translate situations in context into mathematical models					
	AO3.4	Use mathematical models					
	AO3.5a	Evaluate the outcomes of modelling in context					
	AO3.5b	Recognise the limitations of models					
	AO3.5c	Where appropriate, explain how to refine models					

Examiners should consistently apply the following general marking principles:

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to students showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the student to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Work erased or crossed out

Erased or crossed out work that is still legible and has not been replaced should be marked. Erased or crossed out work that has been replaced can be ignored.

Choice

When a choice of answers and/or methods is given and the student has not clearly indicated which answer they want to be marked, mark positively, awarding marks for all of the student's best attempts. Withhold marks for final accuracy and conclusions if there are conflicting complete answers or when an incorrect solution (or part thereof) is referred to in the final answer.

Q	Marking instructions	AO	Marks	Typical solution
1	Ticks 3 rd box	1.1b	B1	128 - 64 + 32 - 16 +
	Question 1 Total		1	

Q	Marking instructions	AO	Marks	Typical solution
2	Circles 2 nd answer	1.1b	B1	$b=\pm 12$
	Question 2 Total		1	

Q	Marking instructions	AO	Marks	Typical solution
3	Ticks 3 rd box	2.2a	B1	<i>y</i> ∱
	Question 3 Total		1	

Q	Marking instructions	AO	Marks	Typical solution
4	Obtains one correct term	1.1a	M1	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4x^3 + 2^x \ln 2$
	Obtains $4x^3 + 2^x \ln 2$	1.1b	A1	
	Condone $4x^3 + \ln 2 \times 2^x$			
	Do not ISW			
	Question 4 Total		2	

Q	Marking instructions	AO	Marks	Typical solution
5	Obtains $\frac{1}{2} \times 18^2 \times \frac{\pi}{6}$ or $\frac{1}{2} \times 18^2 \sin \frac{\pi}{6}$ Allow 0.5 instead of $\sin \frac{\pi}{6}$ Accept use of degrees $eg \frac{30}{360} \times \pi \times 18^2 \text{ or } \frac{1}{2} \times 18^2 \sin 30$	3.1a	M1	$\frac{1}{2} \times 18^{2} \times \frac{\pi}{6} - \frac{1}{2} \times 18^{2} \sin \frac{\pi}{6}$ $= 27\pi - 81$ $= 27(\pi - 3) \text{ cm}^{2}$
	Obtains $\frac{1}{2} \times 18^2 \times \frac{\pi}{6}$ and $\frac{1}{2} \times 18^2 \sin \frac{\pi}{6}$ Allow 0.5 instead of $\sin \frac{\pi}{6}$ Accept use of degrees as above	1.1b	A1	
	Completes reasoned argument to obtain $27(\pi-3)\mathrm{cm^2}$ Must see $27\pi-81$ or $162\bigg(\frac{\pi}{6}-\frac{1}{2}\bigg)$ Accept use of degrees as above ISW	2.1	R1	
	Question 5 Total		3	

Q	Marking instructions	AO	Marks	Typical solution
6(a)	Writes $\frac{1}{\sqrt{x}}$ term as $x^{-\frac{1}{2}}$ PI by \sqrt{x} or $x^{\frac{1}{2}}$ in answer	1.1b	B1	$\int \left(6x^2 - \frac{5}{\sqrt{x}}\right) dx = \int \left(6x^2 - 5x^{-\frac{1}{2}}\right) dx$ $= 2x^3 - 10x^{\frac{1}{2}} + c$
	Obtains one correctly integrated term	1.1a	M1	
	May be unsimplified			
	Obtains $2x^3 - 10x^{\frac{1}{2}} + c$ ISW	1.1b	A1	
	Condone omission of $+c$			
	Must be simplified			
	Subtotal		3	

Q	Marking instructions	AO	Marks	Typical solution
6(b)	Substitutes $x = 4$ into their integrated expression from part 6(a) , with an arbitrary constant and sets equal to 90 PI by -18	3.1a	M1	$90 = 2 \times 4^{3} - 10 \times 4^{\frac{1}{2}} + c$ $c = -18$ $\therefore y = 2x^{3} - 10x^{\frac{1}{2}} - 18$
	Obtains $y = 2x^{3} - 10x^{\frac{1}{2}} - 18$ CAO Condone $f(x)$ for y	1.1b	A1	
-	Subtotal		2	

Question 6 Total	5	

Q	Marking instructions	AO	Marks	Typical solution
7(a)	Shades two of regions 1, 2 or 3 only or shades one of region 1 or 2 or 3 only or shades regions 1, 2 and 3 only	1.1a	M1	$y = 2 + 3x - 2x^{2}$ R $x + y = 1$
	Shades the correct regions 1 and 2 only	2.2a	R1	
	Condone missing label R Subtotal		2	

Q	Marking instructions	AO	Marks	Typical solution
7(b)	Eliminates <i>y</i> or <i>x</i> correctly to obtain a quadratic in <i>x</i> or <i>y</i>	1.1a	M1	$1-x = 2+3x-2x^{2}$ $2x^{2}-4x-1=0$
	Obtains $x = \frac{2 - \sqrt{6}}{2}$ or $\frac{2 \pm \sqrt{6}}{2}$	1.1b	A1	$x = \frac{2 - \sqrt{6}}{2}$
	Accept AWFW [-0.225, -0.22]			$y = \frac{\sqrt{6}}{2}$
	obtains $y = \frac{\sqrt{6}}{2}$ or $\pm \frac{\sqrt{6}}{2}$			So $A\left(\frac{2-\sqrt{6}}{2}, \frac{\sqrt{6}}{2}\right)$
	Accept AWFW [1.22, 1.225]			
	May be unsimplified			
	Obtains $\left(\frac{2-\sqrt{6}}{2}, \frac{\sqrt{6}}{2}\right)$	1.1b	A1	
	Accept $x = \frac{2 - \sqrt{6}}{2}$ and $y = \frac{\sqrt{6}}{2}$			
	ISW Must be simplified			
	Subtotal		3	

Question 7 Total	5	

Q	Marking instructions	AO	Marks	Typical solution
8(a)	Substitutes $t = 0$ into the model PI by 20	3.4	M1	$\theta = 20(11 - 10e^{0})$ = 20
	Obtains 20°C Must have units	3.2a	A1	Room temperature = 20°C
	Subtotal		2	

Q	Marking instructions	AO	Marks	Typical solution
8(b)	Replaces e^{-kt} with 0 or substitutes any positive value for kt	3.4	M1	For large values of t , $e^{-kt} \rightarrow 0$ $T = 20(11-10\times0)$ Hence $T = 220$
	Obtains 220	3.4	A1	
	Subtotal		2	

Q	Marking instructions	AO	Marks	Typical solution
8(c)(i)	Forms the equation $86 = 20(11-10e^{-k})$ PI by correct answer	3.4	M1	$86 = 20(11 - 10e^{-k})$ $k = 0.4$
	Obtains AWFW [0.4, 0.4005] or	3.3	A1	
	-ln 0.67 0E			
	Subtotal		2	

Q	Marking instructions	AO	Marks	Typical solution
8(c)(ii)	Uses their T from part 8(b) and their k from part 8(c)(i) correctly to form the equation $T - 1 = 20 \left(11 - 10e^{-kt} \right)$ PI by correct answer Condone use of inequality sign	3.4	M1	$220 - 1 = 20 \left(11 - 10e^{-0.4t} \right)$ $t = 13.2 \text{ minutes}$
	Obtains AWFW [13.2, 13.25] mins or AWFW [13m 12s, 13m 15s] or 13 mins Condone missing units or $t > 13.2$ or $t \ge 13.2$ ISW	1.1b	A1	
	Subtotal		2	

Question 8 Total	
------------------	--

Q	Marking instructions	AO	Marks	Typical solution
9(a)	Obtains $(x \pm 4)^2$ or $(y \pm 6)^2$	1.1a	M1	$x^{2} + y^{2} = 12y - 8x - 27$ $x^{2} + 8x + y^{2} - 12y = -27$
	Obtains $(x+4)^2 + (y-6)^2$	1.1a	M1	$(x+4)^2-16+(y-6)^2-36=-27$
	Obtains $(x+4)^2 + (y-6)^2 = 25$	1.1b	A1	$(x+4)^2 + (y-6)^2 = 25$
	Accept 5 ² for 25			
	Condone $(x4)^2$ throughout			
	Subtotal		3	

Q	Marking instructions	AO	Marks	Typical solution
9(b)	States (–4, 6) Follow through their squared brackets from part 9(a)	1.2	B1F	(-4, 6)
	Subtotal		1	

Q	Marking instructions	AO	Marks	Typical solution
9(c)	Substitutes $x = 0$ correctly into the given or their equation of circle to form a quadratic equation in y or uses their right-angled triangle correctly to find vertical distance of Q above P PI by $y = 9$ or $(0, 9)$ May be seen on diagram	3.1a	M1	$4^{2} + (y-6)^{2} = 25$ $y^{2} - 12y + 27 = 0$ $y = 3 \text{ or } y = 9$ $\therefore y = 9$
	Obtains 9	2.2a	A1	
	Accept (0, 9)			
	Must come from centre (-4, 6)			
	Subtotal		2	

Q	Marking instructions	AO	Marks	Typical solution
9(d)	Uses distance formula to find QR or PR PI by their 15 for QR or their $5\sqrt{10}$ for PR OE	1.1a	M1	$PR = \sqrt{(94)^2 + (-3 - 6)^2}$ $= 5\sqrt{10}$ $\cos QPR = \frac{5}{5\sqrt{10}}$
	PI by correct answer or AWFW [71.5, 72]°			QPR = 1.25
	Substitutes all their relevant lengths correctly into an appropriate trigonometric equation	3.1a	M1	
	PI by correct answer or			
	AWFW [71.5, 72]°			
	Obtains AWFW [1.249, 1.25]	1.1b	A1	
	Subtotal		3	

Question 9 Total	9	

Q	Marking instructions	AO	Marks	Typical solution
10	States $5(x+h)^3 + (x+h) - (5x^3 + x)$ Condone missing brackets	1.1a	M1	
	Expands $(x+h)^3$ correctly Like terms need not be collected Accept all terms multiplied by 5 May be embedded	1.1a	M1	
	Obtains $\frac{15x^2h + 15xh^2 + 5h^3 + h}{h}$ correctly eliminating $5x^3$ and x PI by $15x^2 + 15xh + 5h^2 + 1$ having seen a division by h Like terms need not be collected	1.1b	A1	$\frac{f(x+h)-f(x)}{h} = \frac{5(x+h)^3 + (x+h)-(5x^3 + x)}{h}$ $= \frac{5(x^3 + 3x^2h + 3xh^2 + h^3) + h - 5x^3}{h}$ $= \frac{15x^2h + 15xh^2 + 5h^3 + h}{h}$ $= 15x^2 + 15xh + 5h^2 + 1$
	Obtains $15x^2 + 15xh + 5h^2 + 1$ by correctly dividing by h Like terms need not be collected	2.1	A1	$f'(x) = \lim_{h \to 0} 15x^2 + 15xh + 5h^2 + 1$ $f'(x) = 15x^2 + 1$
	Completes a reasoned argument using the $\lim_{h\to 0}$ to prove that $f'(x) = 15x^2 + 1$ $f'(x)$ may be seen on the final line or before	2.5	R1	
	Do not allow $\frac{dy}{dx}$ for $f'(x)$ Question 10 Total		5	

Q	Marking instructions	AO	Marks	Typical solution
11	Equates $(x^2 - 8x) \ln x$ to zero PI by 1 or 8 or ±108.(2)	3.1a	M1	$(x^{2} - 8x) \ln x = 0$ $x(x-8) \ln x = 0$ $x = 8, \ln x = 0 \Rightarrow x = 1$
	May be seen on diagram or integral	1.1b	A1	$-\int_1^8 \left(x^2 - 8x\right) \ln x \mathrm{d}x$
	Obtains at least one of $x = 1$ or $x = 8$ PI by $\pm 108.(2)$ May be seen on diagram or integral			$u = \ln x$ $u' = \frac{1}{x}$ $v' = x^2 - 8x$ $v = \frac{x^3}{3} - 4x^2$
	Deduces the limits are 1 and 8 PI by ±108.(2) May be seen on integral or substituted into their integrated expression	2.2a	R1	$\left[\frac{x^3}{3} - 4x^2 \right] \ln x - \int \left(\frac{x^3}{3} - 4x^2 \right) \frac{1}{x} dx$ $= \left(\frac{x^3}{3} - 4x^2 \right) \ln x - \left(\frac{x^3}{9} - 2x^2 \right)$
	States $u = \ln x$ and $v' = x^2 - 8x$	3.1a	M1	
	Condone $v = \ln x$ and $u' = x^2 - 8x$			$\int_{1}^{8} \left(x^2 - 8x\right) \ln x dx$
	Finds $u' = \frac{1}{x}$ and $v = \frac{x^3}{3} - 4x^2$	3.1a	A1	
	Applies integration by parts formula correctly by substituting their <i>u</i> , <i>u</i> ' and <i>v</i>	1.1a	M1	$-\left[\left(\frac{1^3}{3} - 4 \times 1^2\right) \ln 1 - \left(\frac{1^3}{9} - 2 \times 1^2\right)\right]$
	PI by $ \left(\frac{x^3}{3} - 4x^2 \right) \ln x - \left(\frac{x^3}{9} - 2x^2 \right) $ or $ \left(\frac{x^3}{3} - 4x^2 \right) $			$= -\frac{256}{3} \ln 8 + \frac{640}{9} - \frac{17}{9}$
	$-\left(\frac{x^3}{3} + 4x^2\right) \ln x + \left(\frac{x^3}{9} - 2x^2\right)$ Condone missing brackets			$=\frac{623}{9}-256\ln 2$
	Obtains $ \left(\frac{x^3}{3} - 4x^2 \right) \ln x - \left(\frac{x^3}{9} - 2x^2 \right) $ OE or	1.1b	A1	:. Area = $-\frac{623}{9} + 256 \ln 2$
	$-\left(\frac{x^3}{3} + 4x^2\right) \ln x + \left(\frac{x^3}{9} - 2x^2\right) \mathbf{OE}$			

Substitutes their non-zero limits correctly into their integrated expression (the subtraction does not need to be seen) or obtains exact values for their integrated expression using their non-zero limits $eg - \frac{256}{3} \ln 8 + \frac{640}{9} \text{ and } \frac{17}{9}$	1.1a	M1	
Obtains $\frac{623}{9} - 256 \ln 2$ or $\frac{623}{9} - \frac{256}{3} \ln 8$ ACF must be exact form with two terms $\mathbf{PI} - \frac{623}{9} + 256 \ln 2$	1.1b	A1	
Completes a reasoned argument to obtain $-\frac{623}{9} + 256 \ln 2$ To be awarded R1, all marks must be scored	2.1	R1	
Question 11 Total		10	

Q	Marking instructions	AO	Marks	Typical solution
12	Circles 1 st answer	1.1b	B1	3
	Question 12 Total		1	

Q	Marking instructions	AO	Marks	Typical solution
13	Ticks bottom left box	2.5	B1	A B C C
	Question 13 Total		1	

	Q	Marking instructions	AO	Marks	Typical solution
1	14(a)	Obtains 2700	1.1b	B1	2700
		Subtotal		1	

Q	Marking instructions	AO	Marks	Typical solution
14(b)	Uses the correct formula for standard deviation using their mean PI by 400	1.1a	M1	$\sqrt{\frac{2607500000}{350} - 2700^2} = 400$
	Obtains 400	1.1b	A1	
	Subtotal		2	

Q	Marking instructions	AO	Marks	Typical solution
14(c)	Concludes correctly in context for the means Comparison must include the word such as 'on average' or 'typically' etc Follow through the correct comparison of 3100 with their mean from part 14(a)	2.4	E1F	
	Concludes correctly in context for the standard deviations Comparison must include the word such as 'varies', 'spread' 'disperse' 'variation' or 'consistent' etc Follow through the correct comparison of 325 with their standard deviation from part 14(b) Do not allow comparison that includes 'range' or 'variety'	2.4	E1F	The cost of energy for households in Village A is less on average The variation in cost of energy is higher in Village A.
·	Subtotal		2	

Question 14 Total	5	

Q	Marking instructions	AO	Marks	Typical solution
15(a)	Obtains 8.4	1.1b	B1	8.4
	Subtotal		1	

Q	Marking instructions	AO	Marks	Typical solution
15(b)	Shows how to obtain 6.93 by using the correct formula for variance AG	1.1b	B1	Variance = 48 × 0.175 × 0.825 = 6.93
	Subtotal		1	

Q	Marking instructions	AO	Marks	Typical solution
15(c)	Obtains AWFW [0.674, 0.6742]	1.1b	B1	0.6742
	Subtotal		1	

Q	Marking instructions	AO	Marks	Typical solution
15(d)	Finds $P(X \le 5) = [0.132, 0.133]$ or $P(X \le 6) = [0.241, 0.242]$ or $P(X > 6) = [0.758, 0.759]$ or $P(X \ge 6) = [0.867, 0.868]$ PI by correct answer	1.1a	M1	$P(X \ge 6) = 1 - P(X \le 5)$ = 1 - 0.1325 = 0.8675
	Obtains AWFW [0.867, 0.868]	1.1b	A1	
	Subtotal		2	

Q	Marking instructions	AO	Marks	Typical solution
15(e)	Finds $P(X \le 15) = [0.994, 0.9941]$ or $P(X \le 8) = [0.531, 0.532]$ PI by correct answer	1.1a	M1	P (9 ≤ <i>X</i> ≤ 15) = 0.9940 − 0.5317
	Condone incorrect or no labels			= 0.4623
	Obtains AWFW [0.462, 0.4631]	1.1b	A1	
	Subtotal		2	

Q	Marking instructions	AO	Marks	Typical solution
15(f)	States that the model is appropriate because 1. The 48 seats and 17.5% passengers travelling for business match the values of n and p in the	3.5b	E1	Model is appropriate because 48
	model or 2. Only business or non-business passenger 3. Business/non-business passengers occur independently			seats and 17.5% passengers travelling for business match the values of n and p . However the plane may not be full so n may not be 48.
	or			
	states that the model is not appropriate because			
	 The plane may not be full so n might change or might not be 48 The p might change or is not fixed or might not be 0.175 due to eg peak or holiday periods Not independent because passengers might book seats in groups 			
	Do not allow probability being independent			
	Makes a second	3.5b	E1	
	non-contradictory comment in context from the list above, about the suitability of the model			
	Subtotal		2	

Question 15 Total	9	

Q	Marking instructions	AO	Marks	Typical solution
16	States $H_0: \rho = 0$ $H_1: \rho < 0$	2.5	B1	H ₀ : $\rho = 0$ H ₁ : $\rho < 0$ -0.45 < -0.2787
	Compares \pm 0.45 or $ -0.45 $ and \pm 0.2787 May be seen on a diagram	3.5a	M1	Reject H ₀ There is sufficient evidence to suggest the student's belief that, in adults, there is a negative
	$\begin{array}{c} \text{States} -0.45 < -0.2787 \text{or} \\ 0.45 > 0.2787 \text{or} \\ -0.45 > 0.2787 \text{or} \\ -0.45 > 0.2787 \end{array}$ and $\begin{array}{c} \text{Infers H}_0 \text{ rejected} \\ \text{Condone accept H}_1 \end{array}$	2.2b	A1	correlation between the amount of nicotine in their blood stream and their energy level
	Concludes, from a fully correct comparison, in context by referring to negative correlation between the amount of nicotine in the blood stream and the energy level in adults	3.2a	R1	
	Conclusion must not be definite, eg use of 'suggest', 'support' etc To be awarded R1, marks M1A1 must be scored as the minimum			
	Question 16 Total		4	

Q	Marking instructions	AO	Marks	Typical solution
17(a)	Labels 50 on the horizontal axis below the vertex Condone label at the vertex	3.3	B1	
	Labels 54 on the horizontal axis below the right-hand point of inflection Condone label at the right-hand point of inflection	3.3	B1	50 54 Length (cm)
	Subtotal		2	

Q	Marking instructions	AO	Marks	Typical solution
17(b)	States 0.5	1.2	B1	0.5
	Subtotal		1	

Q	Marking instructions	AO	Marks	Typical solution
17(c)	Obtains AWFW [0.0668, 0.067]	1.1b	B1	0.0668
	Subtotal		1	

Q	Marking instructions	AO	Marks	Typical solution
17(d)	Obtains AWFW [0.987, 0.99]	1.1b	B1	0.9876
	Subtotal		1	

Q	Marking instructions	AO	Marks	Typical solution
17(e)	Forms $\frac{x-50}{4} = -1.6449$ or forms $50 + 4 \times (-1.6449)$ PI by correct answer or AWFW [56.56, 56.6]cm or 57cm	3.1b	M1	$\frac{x-50}{4} = -1.6449$
	Allow [-4, 4] except ±0.95 or ±0.05 or 0 for -1.6449			Minimum length is 43.4 cm
	Obtains AWFW [43.4, 43.44] cm or 43 cm	1.1b	A1	
	Condone missing units			
	Subtotal		2	

	Marking instructions	40	Marka	Typical solution
Q	Marking instructions	AO	Marks	Typical solution
17(f)	States $\begin{array}{c} \text{H}_0\text{:}\ \mu=50\\ \text{H}_1\text{:}\ \mu>50 \end{array}$	2.5	B1	X = length of new-born baby
	Obtains 51.5 OE	1.1b	B1	H ₀ : $\mu = 50$ H ₁ : $\mu > 50$
	States or uses correct model	1.1a	M1	$\overline{x} = 51.5$
	PI by normal with mean 50 and variance $\frac{4^2}{40}$ or 0.4			$\bar{X} \sim N(50, \frac{4^2}{40})$
	or standard deviation $\sqrt{0.4}$ or 0.63 or better OE			$P(\bar{X} > 51.5) = 0.0089$
	or by correct probability AWFW [0.0086, 0.009]			0.0089 < 0.1 Reject H ₀
	or test statistic (±) $\frac{51.5-50}{\frac{4}{\sqrt{40}}}$			There is sufficient evidence to
	FT their 51.5 for test statistic			suggest that the mean length of a new-born baby at the clinic in 2020 has increased compared to 2019.
	or test statistic value AWFW (±)[2.37, 2.4]			
	or critical value AWFW [50.8, 51]			
	Obtains AWFW [0.0086, 0.009]	1.1b	A1	
	or the correct value of the test statistic AWFW [2.37, 2.4]			
	or acceptance region ≤ AWFW [50.8, 51] allow strict inequality			
	or critical region ≥ AWFW [50.8, 51] allow strict inequality			
	or critical value AWFW [50.8, 51]			

	Subtotal		7	
E	To be awarded R1, marks B0B1M1A1M1A1 must be scored as the minimum			
	Conclusion must not be definite, eg use of 'suggest', 'support' etc			
r	Concludes, from a fully correct comparison, in context by referring to an increase in the mean length of new-born baby at the clinic.	3.2a	R1	
(Condone accept H₁			
F	FT their comparison			
I	Infers H₀ rejected	2.2b	A1F	
N	May be seen on a diagram			
t	or correctly compares 51.5 with their acceptance region or critical region or critical value FT their sample mean			
[[or correctly compares their positive test statistic with AWFW [1.28, 1.282]			
C	Correctly compares their value of $P(> \text{ or } \ge \text{ their sample mean})$ with 0.1	3.5a	M1	

Question 17 Total	14	

Q	Marking instructions	AO	Marks	Typical solution
18(a)(i)	Obtains 0.39	1.1b	B1	0.39
	Subtotal		1	

Q	Marking instructions	AO	Marks	Typical solution
18(a)(ii)	States or calculates $1 - P(G \cap H)$ or states $0.07 + 0.18 + 0.54$ PI by correct answer	1.1a	M1	1 – 0.21 = 0.79
	Obtains 0.79	1.1b	A1	
	Subtotal		2	

Q	Marking instructions	AO	Marks	Typical solution
18(a)(iii)	States $P(H \mid G') = \frac{P(H \cap G')}{P(G')}$ Condone missing $P(H \mid G')$ or states $P(H \cap G') = 0.07$ or $\frac{0.07}{k}$ seen or states $0.07 + 0.54$ or 0.61 or $\frac{k}{0.07 + 0.54}$ seen	1.1a	M1	$P(H \mid G') = \frac{P(H \cap G')}{P(G')}$ $= \frac{0.07}{0.61}$ $= \frac{7}{61}$
	Obtains $\frac{7}{61}$ or AWFW [0.11, 0.115]	1.1b	A1	
	Subtotal		2	

Q	Marking instructions	AO	Marks	Typical solution
18(b)	States their $P(G)$ from part $\mathbf{18(a)(i)} \times 0.28$ or compares their $P(G)$ from part $\mathbf{18(a)(i)}$ with 0.75 or compares their $P(H \mid G)$ with 0.28 or compares their $P(H \mid G')$ from part $\mathbf{18(a)(iii)}$ with 0.28 or any other valid comparison with one correct probability to at least 2 sf	3.1b	M1	$P(G) \times P(H) = 0.39 \times 0.28$ = 0.1092 $P(G \cap H) = 0.21$ $P(G \cap H) \neq P(G) \times P(H)$ Hence G and H are not independent
	Completes a reasoned argument and concludes that G and H are not independent	2.4	R1	
	Subtotal		2	

Q	Marking instructions	AO	Marks	Typical solution
19(a)(i)	States $H_0: p = 0.8$ $H_1: p \neq 0.8$	2.5	B1	H_0 : $p = 0.8$ H_1 : $p \neq 0.8$
	Subtotal		1	

7

Question 18 Total

Q	Marking instructions	AO	Marks	Typical solution
19(a)(ii)	States or uses correct model	3.3	B1	$X \sim B(25, 0.8)$
	PI by calculation of one of $P(X \le x)$ where $x = [1, 24]$ or $P(X \ge x)$ where $x = [1, 25]$ or $P(X = x)$ where $x = 0$ or 25 or by critical region of $x \le 16$ or $x \ge 24$			$P(X \le 15) = 0.0173 < 0.05$ $P(X \le 16) = 0.0468 < 0.05$ $P(X \le 17) = 0.1091 > 0.05$ $P(X \ge 23) = 0.0982 > 0.05$ $P(X \ge 24) = 0.0274 < 0.05$ $P(X \ge 25) = 0.0038 < 0.05$
	Obtains one of (List 1) [0.017, 0.0174] or [0.046, 0.047] or [0.109, 0.11] or [0.098, 0.0983] or [0.027, 0.0274] or [0.0037, 0.0038] or obtains one of (List 2) [0.982, 0.983] or [0.953, 0.954] or [0.890, 0.891] or [0.901, 0.902] or [0.97, 0.973] or [0.996, 0.9963] PI by critical region of $x \le 16$ or $x \ge 24$ Ignore labels	1.1a	M1	Critical region is $x \le 16$, $x \ge 24$
	Compares one probability from List 1 with 0.05 or compares one probability from List 2 with 0.95 PI by critical region of $x \le 16$ or $x \ge 24$	1.1a	M1	
	Obtains one of the critical regions of $x \le 16$ or $x \ge 24$	1.1b	A1	
	Obtains both critical regions $x \le 16$, $x \ge 24$	3.2a	A1	
	Accept critical region of $x < 17$ or $0 \le x < 17$, $x > 23$			
	Condone use of any letter for x or stating \leq 16 or \geq 24 throughout		-	
	Subtotal		5	

Q	Marking instructions	AO	Marks	Typical solution
19(a)(iii)	Concludes correctly in context from a fully correct comparison Conclusion must not be definite, eg use of 'suggest', 'support' etc Follow through the correct comparison of 18 with their critical region from part 19(a)(ii) The comparison does not need to be seen	2.2b	E1F	There is insufficient evidence to suggest that proportion of diesel cars registered in 2022 with CO emissions less than 0.3 g/km has changed
	Subtotal		1	

Q	Marking instructions	AO	Marks	Typical solution
19(b)	States one of the following reasons 1. no diesel cars in the LDS have CO emissions more than 0.5 g/km 2. Values of CO emissions for some diesel cars are missing from LDS 3. LDS data is not representative due to only few regions in England or some makes of cars or only two years	2.4	E1	No diesel cars in the LDS have CO emissions more than 0.5 g/km The LDS only uses data from cars
	1. no diesel cars in the LDS have CO emissions more than 0.5 g/km 2. Values of CO emissions for some diesel cars are missing from LDS 3. LDS data is not representative due to only few regions in England or some makes of cars or only two years Subtotal	2.4	E1	in some regions in England but not all

Question 19 Total	9	
Question Paper Total	100	