

Please write clearly in	block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

A-level CHEMISTRY

Paper 1 Inorganic and Physical Chemistry

Monday 10 June 2024

Morning

Time allowed: 2 hours

Materials

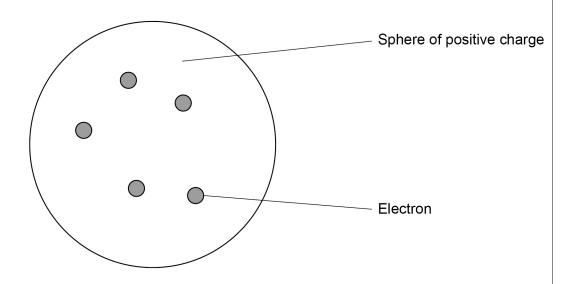
For this paper you must have:

- the Periodic Table/Data Booklet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do **not** write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information


- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9		
TOTAL		

- Answer **all** questions in the spaces provided.
- 0 1 This question is about atomic structure.
- 0 1 . 1 In 1897 JJ Thomson discovered the electron. He suggested that atoms were positively charged spheres with electrons embedded within them.

Figure 1 represents an atom using Thomson's model.

Figure 1

Suggest the identity of this atom.

Give **two** differences between the modern model of an atom and the Thomson model of an atom.

[3 marks]

Identity			
Difference 1			
Difference 2			

Do	not not	writ
Ol	ıtside	e the
	bo	X

0 1.2	Tellurium has a relative atomic mass of 127.6 lodine has a relative atomic mass of 126.9	
	Define relative atomic mass.	
	Suggest one property of tellurium that justifies its position before iodine in the modern Periodic Table.	3 marks]
	Definition	
0 1.3	A sample of tellurium is analysed in a time of flight (TOF) mass spectrometer electron impact ionisation.	using
	Give an equation, including state symbols, for this ionisation.	[1 mark]
	Question 1 continues on the next page	

Do not write
outside the
box

0	1	4

In the TOF mass spectrometer an ion of an isotope of tellurium, with mass number $\bf y$, travels along a 1.25 m flight tube with a kinetic energy of 1.88 x 10^{-12} J

The ion takes 3.00×10^{-7} s to reach the detector.

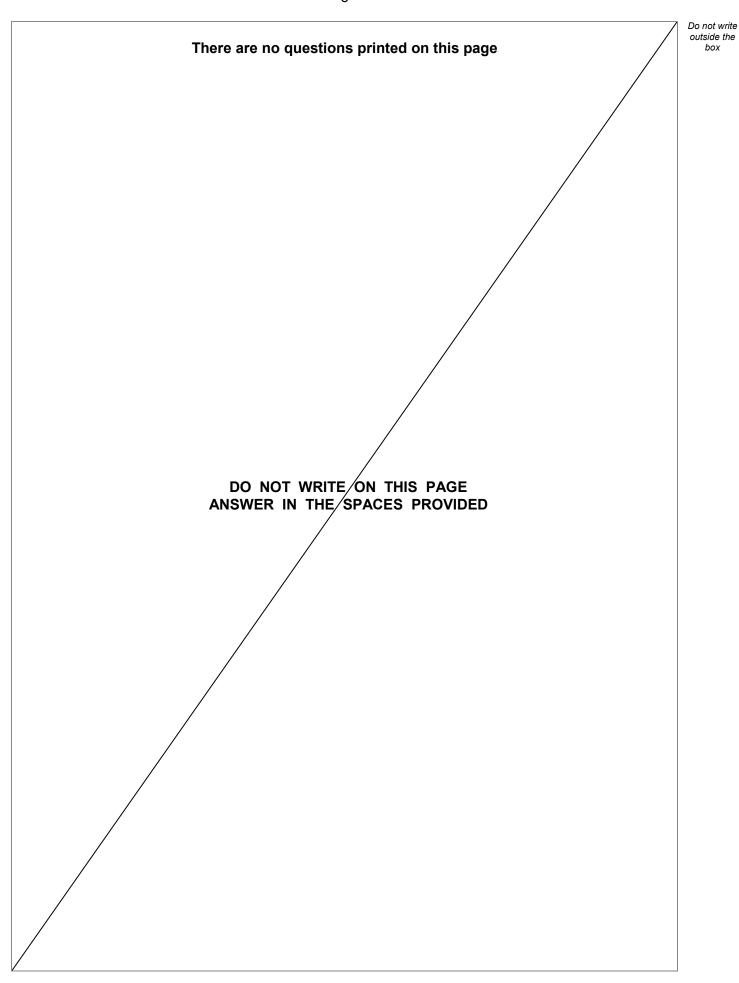
$$KE = \frac{1}{2} mv^2$$

KE = kinetic energy / J m = mass / kg v = speed / m s⁻¹

Calculate the mass, in g, of 1 mole of these tellurium ions.

Use your answer to suggest the mass number **y** of the tellurium isotope.

The Avogadro constant, $L = 6.022 \times 10^{23} \text{ mol}^{-1}$


[5 marks]

Mass	g

Mass number **y**

			Do not write
0 1.5	Tellurium has several other isotopes. Two of these isotopes are ¹²⁶ Te and ¹²⁴ Te A different sample of tellurium is analysed using a TOF mass spectrometer.		outside the box
	Which statement about kinetic energy (KE) is correct?	F4 13	
	Tick (✓) one box.	[1 mark]	
	The <i>KE</i> of ¹²⁶ Te ⁺ is greater than the <i>KE</i> of ¹²⁴ Te ⁺		
	The <i>KE</i> of ¹²⁶ Te ⁺ is the same as the <i>KE</i> of ¹²⁴ Te ⁺		
	The <i>KE</i> of ¹²⁶ Te ⁺ is less than the <i>KE</i> of ¹²⁴ Te ⁺		13
	Turn over for the next question		
	rum ever for the next queetien		

Do not write
outside the
hov

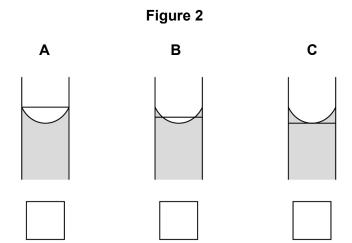
0	2	This	an
		Inis	qu

This question is about an experiment to determine the solubility of strontium hydroxide in water at 20 °C

Strontium hydroxide is slightly soluble in water. Strontium hydroxide solution reacts in a similar way to calcium hydroxide solution.

- Some solid strontium hydroxide is added to approximately 1 dm³ of distilled water in a stoppered flask.
- The mixture is kept at 20 °C. Every day, the mixture is checked. If no solid is present in the flask, more solid strontium hydroxide is added.
- On the day when no more solid needs to be added, the flask is opened and the mixture is filtered into another flask and stoppered.
- A 25.0 cm³ sample of the filtrate is transferred to a conical flask with a pipette and a few drops of indicator added.
- This sample is titrated with 0.100 mol dm⁻³ hydrochloric acid.
- The titration is repeated several times with further samples of the filtrate. The results are shown in **Table 1** on page 8.

0 2.1	Suggest why the solution is kept until no more solid needs to be added.	[1 mark]
0 2.2	Suggest why it is important to remove the undissolved strontium hydroxide be titration.	fore the
0 2.3	After the filtration, the solution is stored in a stoppered flask. Suggest a reason for stoppering the flask.	[1 mark]
	Question 2 continues on the next page	



0 2.4 The diagrams in **Figure 2** show the part of a pipette with the graduation line.

Which diagram identifies the pipette that is correctly filled?

[1 mark]

Tick (✓) one box.

0 2 . 5 Solubility can be quoted as 'g of solute per 100 cm³ of solution'.

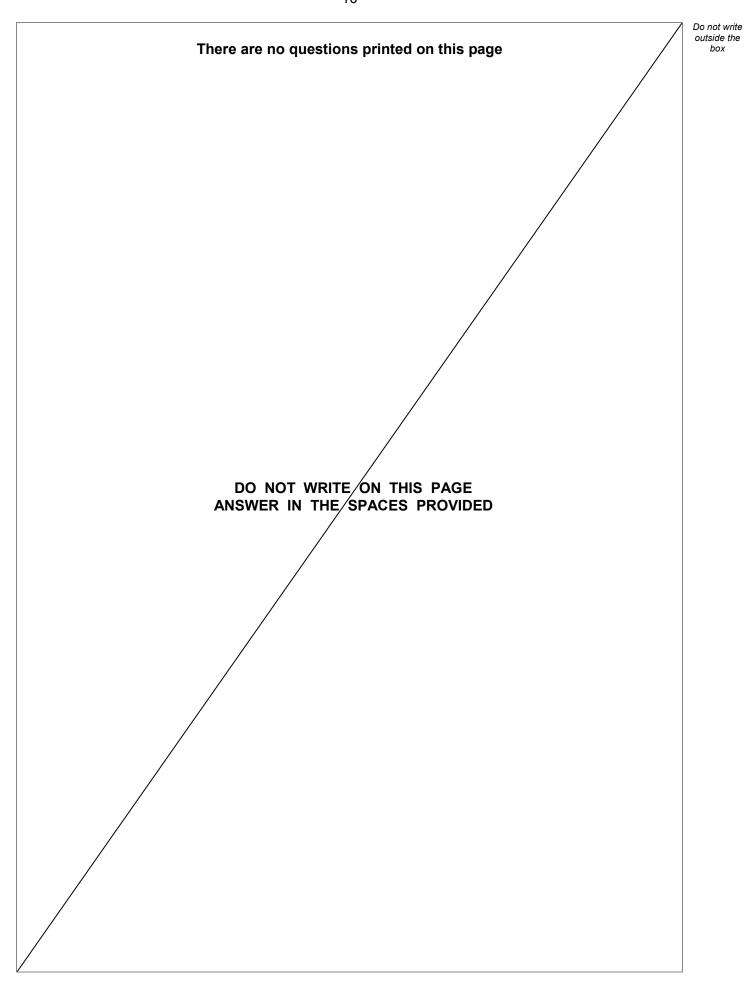
Table 1 shows the results of the titrations between strontium hydroxide and hydrochloric acid. These can be used to determine the solubility of strontium hydroxide.

Table 1

Titration	Rough	1	2	3
Final burette reading / cm ³	34.40	38.00	41.05	37.00
Initial burette reading / cm ³	0.00	5.55	8.05	4.60
Titre / cm ³	34.40	32.45	33.00	32.40

Give the equation for the reaction between strontium hydroxide and hydrochloric acid.

Use the results in **Table 1** to calculate the mean titre.


Use the mean titre to calculate the solubility of strontium hydroxide, in g per 100 $\rm cm^3$ of solution, at 20 $^{\circ} \rm C$

[6 marks]

E	Equation	Do not write outside the box
_		
	Mean titrecm³	
	Solubility of strontium hydroxide g per 100 cm³ solution	10
	Turn over for the next question	

			_
0 3	This question is about aqueous ions of the metal iron.		Do no outsi b
	When an aqueous $[Fe(H_2O)_6]^{3+}$ ion reacts with ethanedioate ions, an iron(III) complex ion ${\bf X}$ is formed.		
	The only ligands in X are ethanedioate ions.		
0 3.1	Draw the structure of X .		
	Include the charge.	[2 marks]	
0 3 . 2	The formation of X is an example of the chelate effect.		
	Explain the meaning of the chelate effect.	[2 marks]	

		Do not write
0 3.3	Outline how Fe $^{2+}$ ions catalyse the reaction between $S_2O_8{}^{2-}$ ions and I^- ions in aqueous solution.	outside the
	In your answer you should include	
	 a sketch graph to show how the concentration of \$S_2O_8^2\$- ions changes over time an explanation of how Fe²⁺ ions catalyse the reaction, including equations an overall equation for the reaction. 	
	[6 marks]	
		1

0 3.4	A student adds dilute ammonia solution to a solution containing $[Fe(H_2O)_6]^{2+}$ ions.	Do not write outside the box
	Give the formula of the precipitate that forms. [1 mark]	
0 3.5	The student adds sodium carbonate solution to a solution containing $[\text{Fe}(H_2O)_6]^{2^+}$ ions.	
	State one observation the student would make.	
	Give an equation for the reaction. [2 marks]	
	Observation	
	Equation	
0 3.6	A solution containing $[Fe(H_2O)_6]^{2+}$ ions changes to a yellow-brown colour after several hours in contact with air.	
	The student adds sodium carbonate to the yellow-brown solution.	
	Give an equation for the reaction with sodium carbonate. [1 mark]	
		14

0 4

0 4 . 1

0 4 . 2

15	
This question is about some gas mixtures at equilibrium.	Do not write outside the box
This reaction can be used to make hydrogen.	
$H_2O(g) + CO(g) \rightleftharpoons H_2(g) + CO_2(g)$ $\Delta H = -41 \text{ kJ mol}^{-1}$	
A mixture of 2.00 mol of $H_2O(g)$ and 2.00 mol of $CO(g)$ is allowed to reach equilibrium at a constant temperature in a 20 dm ³ container. At equilibrium, there are 0.92 mol of $H_2(g)$.	
Calculate the mole fraction of H ₂ (g) in the equilibrium mixture. [2 marks]	
Mole fraction of H₂(g)	
State why the equilibrium constant (K_p) for this reaction has no units. [1 mark]	
Question 4 continues on the next page	

Do not write
outside the
hov

0 4 . 3	The temperature of the equilibrium mixture formed in Question 04.1 is increased	sed.
	How does the amount of $H_2(g)$ change when the new position of equilibrium i reached?	
	Tick (✓) one box.	[1 mark]
	The amount decreases.	
	The amount does not change.	
	The amount increases.	
	Ethanol can be made from ethene and steam.	
	$C_2H_4(g) + H_2O(g) \rightleftharpoons CH_3CH_2OH(g)$ $\Delta H = -45 \text{ kJ mol}^{-1}$	
	Table 2 shows the mole fractions of each of the gases in an equilibrium mixtu	ure at

6000 kPa

Table 2

Gas	Mole fraction
Ethene	0.645
Steam	0.323
Ethanol	0.0321

		Do not write
0 4.4	Give an expression for K_p for this reaction.	outside the
	Calculate the value of K_p at 6000 kPa	
	State the units.	
	[4 marks]	
	$\mathcal{K}_{ extsf{p}}$	
	11	
	Units	
0 4 . 5	State the effect, if any, of an increase in volume of the container on the value of K_p for	
	this reaction at a constant temperature. [1 mark]	
		9
	Turn over for the next question	

0 5	This question is about chlorine.	
0 5.1	Give an equation to show how chlorine forms an acidic solution in water.	[1 mark]
0 5.2	Give an equation for the reaction between chlorine and cold, dilute aqueous sodium hydroxide.	[1 mark]
0 5.3	In acidic conditions, ClO ₃ ⁻ ions oxidise Cl ⁻ ions to form Cl ₂ Deduce a half-equation for the oxidation of Cl ⁻ to Cl ₂ Deduce a half-equation for the reduction of ClO ₃ ⁻ to Cl ₂ Deduce the overall equation for this reaction. Half-equation for the oxidation of Cl ⁻ to Cl ₂	[3 marks]
	Half-equation for the reduction of ClO ₃ ⁻ to Cl ₂ Overall equation	

0 5.4	Give the equation for the reaction of solid sodium chloride with concentrated sulfuric acid.		Do r outs
	State the role of the chloride ions in this reaction.	[2 marks]	
	Equation		
	Role		
0 5 . 5			
0 3. 3	Draw the shape of the Cl ₃ ⁻ ion. Include any lone pairs of electrons that influence the shape.	[1 mark]	
0 5 . 6	Chloring forms on ion with the Crown 2 plansant the lives (TI)		
0 5 . 6	Chlorine forms an ion with the Group 3 element thallium (Tl). State and explain the bond angle in $TlCl_2^+$		
	Dand anala	[2 marks]	
	Bond angleExplanation		
			1

0 6

This question is about vanadium ions.

Table 3 shows some standard electrode potential values.

Table 3

	<i>E</i> ° / V
$O_2(g) + 4 H^+(aq) + 4 e^- \rightarrow 2 H_2O(I)$	+1.23
$VO_2^+(aq) + 2H^+(aq) + e^- \rightarrow VO^{2+}(aq) + H_2O(I)$	+1.00
$VO^{2+}(aq) + 2H^{+}(aq) + e^{-} \rightarrow V^{3+}(aq) + H_{2}O(I)$	+0.34
$V^{3+}(aq) + e^- \rightarrow V^{2+}(aq)$	-0.26
$Fe^{2+}(aq) + 2e^- \rightarrow Fe(s)$	-0.44
$Zn^{2+}(aq) + 2e^- \rightarrow Zn(s)$	-0.76
$V^{2+}(aq) + 2e^- \rightarrow V(s)$	-1.20
$Mg^{2+}(aq) + 2e^- \rightarrow Mg(s)$	-2.38

0 6 . 1	Use the data in Table 3 to explain why Zn reduces an aqueous solution of VO ₂ ⁺ ions
	to V ²⁺ ions, but does not reduce it any further.
	. [2 mark

0 6 . 2	Identify the species in Table 3 that can reduce an aqueous solution of VO ₂ ⁺ to V
	[1 mark]

0 6 . 3	Two half-cells $Fe^{2+}(aq)$ / $Fe(s)$ and $VO^{2+}(aq)$ / $V^{3+}(aq)$ are connected. Calculate the EMF of this cell.	
	Give the conventional representation for this cell.	
	Give a half-equation for the reaction that occurs at the negative electrode.	[3 marks]
	EMF	
	Cell representation	
	Half-equation	

Question 6 continues on the next page

Turn over ▶

0 6. 4

0.151~g of impure NH₄VO₃ is added to dilute sulfuric acid to form a solution containing aqueous VO₂⁺ ions.

All the VO₃⁻ ions are converted to VO₂⁺ ions.

These VO₂⁺ ions are reduced to aqueous V²⁺ ions by reaction with an excess of zinc.

$$2VO_2^+(aq) + 8H^+(aq) + 3Zn(s) \rightarrow 3Zn^{2+}(aq) + 2V^{2+}(aq) + 4H_2O(l)$$

The excess of zinc is removed by filtration and washed.

The filtrate, containing the V^{2+} ions, is titrated with a 0.0200 mol dm $^{-3}$ solution of acidified KMnO₄

 29.43 cm^3 of KMnO₄ solution are needed to oxidise all the V^{2+} ions to VO_2^+ ions.

The ionic equation for the reaction of MnO₄⁻ ions with V²⁺ ions is

$$3 \text{MnO}_4^-(aq) + 5 \text{V}^{2+}(aq) + 4 \text{H}^+(aq) \rightarrow 2 \text{H}_2 \text{O}(I) + 3 \text{Mn}^{2+}(aq) + 5 \text{VO}_2^+(aq)$$

Calculate the percentage purity of the NH₄VO₃ Give your answer to 3 significant figures.

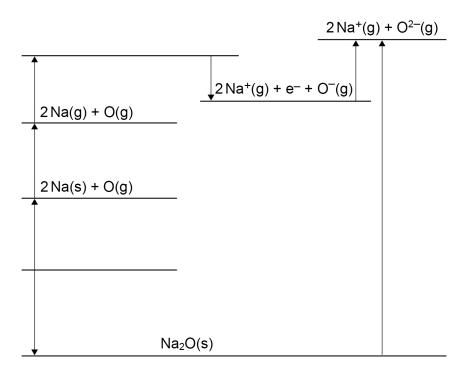
[4 marks]

Percentage purity

10

		Do not write outside the
0 7	At 40 °C the ionic product of water, $K_w = 2.92 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$	box
0 7.1	Give the expression for $K_{\rm w}$	
	Calculate the pH of pure water at 40 °C Give your answer to 2 decimal places.	
	[3 marks]	
	K_{w}	
	pH	
0 7.2	35.0 cm³ of 0.150 mol dm⁻³ aqueous sodium hydroxide are mixed with 20.0 cm³ of a 0.100 mol dm⁻³ solution of hydrochloric acid. The temperature of the solution formed is 40 °C	
	Calculate the pH of the solution formed. Give your answer to 2 decimal places.	
	[5 marks]	
	pH	8
	P' '	

- 0 8 This question is about enthalpy changes.
- **0 8**. **1** Theoretical values for enthalpies of lattice dissociation can be calculated using a perfect ionic model.


State the meaning of the term perfect ionic model.

[1 mark]

0 8. 2 Enthalpies of lattice dissociation can also be obtained from Born–Haber cycles.

Figure 3 shows an incomplete Born–Haber cycle for the formation of sodium oxide.

Figure 3

Complete **Figure 3** by writing formulas, including state symbols, of the appropriate species on each of the two blank lines.

[2 marks]

0 8 . 3

Table 4 shows some enthalpy changes.

Table 4

Enthalpy change	ΔH / kJ mol ⁻¹	
Enthalpy of atomisation of oxygen	+248	
Enthalpy of atomisation of sodium	+109	
Enthalpy of formation of sodium oxide	-416	
First ionisation energy of sodium	+494	
First electron affinity of oxygen	-142	
Second electron affinity of oxygen	+844	

Use the data in **Table 4** to calculate the enthalpy of lattice dissociation of sodium oxide.

[2 marks]

Enthalpy of lattice dissociation	KJ mol ⁻¹
plain why the second electron affinity of oxygen has a positive value.	[1 mark]

Question 8 continues on the next page

Turn over ▶

0 8 .

	enthalpy	of lattice dissociation for sodium chloride.	[2	marks
8.6	Sodium	chloride dissolves in water.		
	Table 5	shows some more enthalpy changes.		
		Table 5		
		Enthalpy change	Δ <i>H</i> / kJ mol ⁻¹	
		Enthalpy of hydration for Cl ⁻ ions	-364	
		Enthalpy of hydration for Na⁺ ions	-406	
		Enthalpy of lattice dissociation for NaCl	+771	
	Use the	data in Table 5 to calculate the enthalpy of		marks
		Enthalpy of solution	k	J mol

0 8.7	Give a reason why data books do not contain a value for the enthalpy of solution of sodium oxide.
	[1 mark

0 8.8 Calculate the temperature, in °C, at which this reaction becomes feasible.

NaCl(s)
$$\rightarrow$$
 Na(s) + $\frac{1}{2}$ Cl₂(g) ΔH = +411 kJ mol⁻¹ ΔS = +90.1 J K⁻¹ mol⁻¹

[3 marks]

Temperature °C

14

Turn over for the next question

0 9	This question is about metals and their compounds.	
0 9.1	State why the atomic radius of calcium is greater than the atomic radius of magnesium.	[1 mark]
0 9.2	Magnesium reacts with steam.	
	Give an equation, including state symbols, for this reaction.	[1 mark]

0 9.3	Similar-sized pieces of barium and magnesium are added to separate 100 cm ³ samples of dilute sulfuric acid. In each case the sulfuric acid is in excess.
	The barium reacts quickly at first. After a few minutes the reaction stops, even though there is still some unreacted barium in the flask.
	The magnesium reacts more slowly than the barium, but the reaction continues until all the magnesium has reacted.
	Explain why
	 the barium initially reacts more quickly than the magnesium the barium reaction stops before all the barium has reacted. [3 marks]
	Question 9 continues on the next page

Do	not	writ
ou	tside	e the
	ho	~

0 9 .	4

A metal nitrate $\mathbf{X}(NO_3)_2$ completely decomposes when heated.

$$2\, \boldsymbol{X} (NO_3)_2(s) \ \to \ 2\, \boldsymbol{X} O(s) \ + \ 4\, NO_2(g) \ + \ O_2(g)$$

A 0.832 g sample of $\mathbf{X}(NO_3)_2$ decomposes on heating to produce a total of 348 cm³ of gas at 298 K and 100 kPa

Deduce the identity of metal ${\bf X}$.

The ideal gas constant, $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

[6 marks]

Identity of metal X _____

9.5	Sodium reacts with aluminium and hydrogen to form solid NaAlH₄	
	Give an equation for this reaction.	
	Suggest why NaAlH₄ has a high melting point.	[3 marks]
	Equation	[o marks]
	Suggestion_	
9.6	Give the equation for the reaction between H ₃ PO ₄ and an excess of NaOH	[1 mark]
	Lithium is an important metal used in cells to power mobile phones.	
9.7	In a lithium cell, a lithium cobalt oxide electrode and a lithium electrode are u	sed.
	Give the equation for the reaction that occurs at the positive electrode.	[1 mark]
9 . 8	Commercial electrochemical cells can be rechargeable or non-rechargeable.	
	State why lithium cells can be recharged.	[1 mark]
	END OF QUESTIONS	
	END OF GUESTIONS	

There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2024 AQA and its licensors. All rights reserved.

