

Please write clearly in	n block capitals.	
Centre number	Candidate number	
Surname	·	
Forename(s)		
Candidate signature	I declare this is my own work.	/

GCSE CHEMISTRY

H

Higher Tier Paper 1

Friday 17 May 2024

Morning

Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

Instructions

- Use black ink or black ball-point pen.
- · Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- In all calculations, show clearly how you work out your answer.
- You are reminded of the need for good English and clear presentation in your answers.

For Examiner's Use			
Question	Mark		
1			
2			
3			
4			
5			
6			
7			
8			
9			
TOTAL			

0 1	A student produced a salt by reacting copper carbonate with sulfuric acid.	
	This is the method used.	
	1. Measure 50 cm ³ of sulfuric acid into a beaker.	
	2. Add copper carbonate powder.	
	3. Stir the mixture.	
	4. Repeat steps 2 and 3 until copper carbonate is in excess.	
	5. Filter the mixture. 6. Warm the filtrate gently until ervetale start to appear	
	6. Warm the filtrate gently until crystals start to appear.7. Leave the solution to cool and crystallise.	
	7. Eduvo trio dolution to doci and crystallico.	
0 1.1	Complete the word equation for the reaction.	
		[2 marks]
	copper + sulfuric + +	carbon
	carbonate ⁺ acid ⁺	dioxide
0 1 2	Cive and chearvation the student could make during Stan A which shows th	at the
0 1 . 2	Give one observation the student could make during Step 4 which shows th copper carbonate is in excess.	at the
		[1 mark]
0 1 . 3	Give one reason for filtering the mixture in Step 5 .	
		[1 mark]

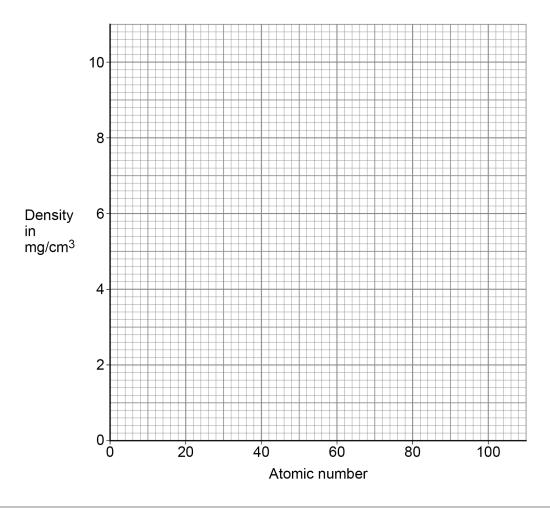
Do not write outside the box

0 1.4	Name the equipment that can be used to warm the filtrate gently in Step 6 . [1 mark]
0 1.5	The maximum theoretical mass of the salt that could be produced using 50 cm³ of the sulfuric acid is 12.5 g. The percentage yield of the salt is 92.8%.
	Calculate the mass of salt actually produced.
	Use the equation:
	% yield = $\frac{\text{mass of salt actually produced}}{\text{maximum theoretical mass of salt that could be produced}} \times 100$
	[3 marks]
	Mass of salt actually produced =g
	Question 1 continues on the next page

			Do no	ot write
0 1.6	Some salts can be produced by reacting sulfuric acid with a metal.			de the
	Neither copper nor sodium is used to produce a salt with sulfuric acid.			
	Give one reason why each metal is not used.			
		[2 marks]		
	Copper			
	Sodium		_	
				10

0 2	This question is about the periodic table.
	Sodium and potassium are in Group 1 of the periodic table.
0 2.1	Give one similarity and one difference between the electronic structures of sodium and potassium. [2 marks]
	Similarity
	Difference
	Group 1 elements react with water.
0 2.2	Give two observations made when potassium reacts with water. [2 marks]
	1
	2
0 2.3	Potassium hydroxide solution is produced when potassium reacts with water.
	What is the colour of universal indicator when added to potassium hydroxide solution?
	Give one reason for your answer. [2 marks]
	Colour of universal indicator
	Reason

Table 1 shows the densities of some of the elements in Group 0 of the periodic table.


Table 1

Element	Atomic number	Density in mg/cm ³
Helium	2	0.2
Neon	10	0.8
Argon	18	1.6
Krypton	36	x
Xenon	54	5.4
Radon	86	9.1

0 2. 4 Plot the data from Table 1 on Figure 1.

[2 marks]

Figure 1

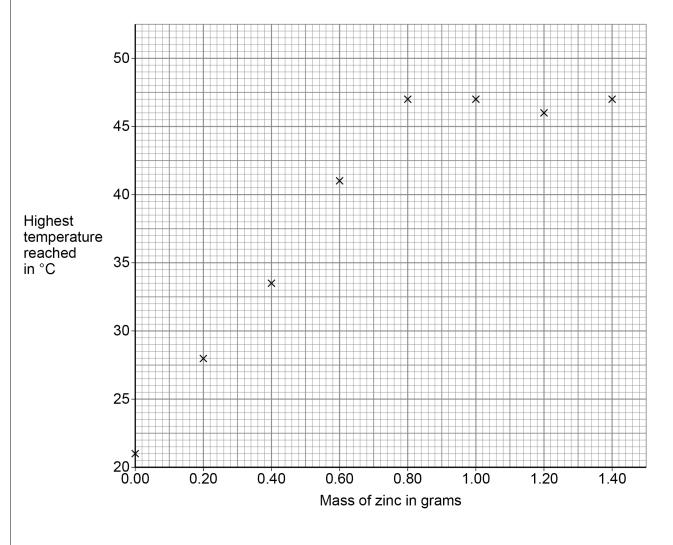
0 2.5	Estimate the density (X) of krypton.	Do not write outside the box
	Use Figure 1 and Table 1 . [1 mark]	
	Density = mg/cm ³	
0 2.6	The elements in Group 7 are called the halogens.	
	A more reactive halogen can displace a less reactive halogen from a solution of its salt.	
	Which combination of solutions will produce a reaction when mixed? [1 mark] Tick (✓) one box.	
	Chlorine and potassium fluoride	
	Chlorine and potassium bromide	
	Bromine and potassium fluoride	
	Bromine and potassium chloride	
0 2.7	Which of the following describes the trends going down Group 7? Tick (✓) one box. [1 mark]	
	Relative molecular mass decreases and boiling point decreases.	
	Relative molecular mass decreases and boiling point increases.	
	Relative molecular mass increases and boiling point decreases.	
	Relative molecular mass increases and boiling point increases.	11

0 3 This question is about models of the atom. Figure 2 shows two early models of the atom. Figure 2 Model A Model B Ball of positive charge (\pm) 0 3 . Name the models of the atom shown in Figure 2. [2 marks] Model A _____ Model **B** 0 3 Compare model **A** with the model of the atom used today. Use Figure 2. [4 marks]

0 3.3	Chadwick's experiments showed the existence of neutrons in an atom.	outside th
	This led to an understanding of isotopes.	
	Define the term 'isotopes'.	
	Refer to subatomic particles in your answer. [2 marks]	
		8

Turn over for the next question

0 4


A student investigated the energy change of the reaction between zinc and copper sulfate solution.

This is the method used.

- 1. Measure 25 cm³ of copper sulfate solution into a polystyrene cup.
- 2. Measure the temperature of the copper sulfate solution.
- 3. Add 0.20 g of zinc powder to the copper sulfate solution.
- 4. Stir the reaction mixture.
- 5. Record the highest temperature reached.
- 6. Repeat steps 1 to 5 with different masses of zinc powder.

Figure 3 shows the results.

Figure 3

0 4.1	Draw two lines of best fit on Figure 3.	
	The lines should cross.	[2 marks]
		[2 marko]
0 4 . 2	Explain the results shown in Figure 3 .	
	Do not refer to anomalous points.	
	Use data from Figure 3 .	[4 marks]
0 4 . 3	Explain why using a polystyrene cup gives more accurate results than using glass beaker.	
		[2 marks]
		·
0 4 . 4	Complete the ionic equation for the reaction between zinc and copper sulfate solution.	
	Include state symbols.	.
		[2 marks]
	$Zn(s) + Cu^{2+}(aq) \rightarrow(_) +(_)$	

A different student repeated steps 1 to 5 of the method four times using $0.50~\mathrm{g}$ of zinc powder.

Table 2 shows the results.

Table 2

	Trial 1	Trial 2	Trial 3	Trial 4
Highest temperature reached in °C	37.6	37.2	37.8	37.4

0 4 . 5	Calculate the mean highest temperature reached. Include the uncertainty in your answer.	[3 marks]
	Mean highest temperature reached = ±	
4.6	The results show random errors.	
	The student did not make any measuring errors.	
	Suggest one reason for the random errors in this experiment.	[1 mark]

Do not write outside the box Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

0 5	This question is about ionic compounds and electrolysis.	
	Calcium chloride is an ionic compound.	
0 5.1	Calcium and chlorine react to produce calcium chloride. Describe what happens to calcium atoms and chlorine atoms when the ionic compound calcium chloride is formed.	[4 marks]
0 5 . 2	Solid calcium chloride cannot be electrolysed. Give one reason why.	[1 mark]
0 5.3	Name the product formed at the negative electrode when aqueous calcium consolution is electrolysed.	hloride [1 mark]

			Do not write
What is the half equation for the reaction at the positive electrode when aqueous calcium chloride solution is electrolysed? [1 mark]			
	Tick (✓) one box.	iliai kj	
	$2Cl^{-} \rightarrow Cl_{2} + 2e^{-}$		
	$Cl_2 + 2e^- \rightarrow 2Cl^-$		
	$4OH^{-} \rightarrow O_{2} + 2H_{2}O + 4e^{-}$		
	$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$		
	Question 5 continues on the next page		

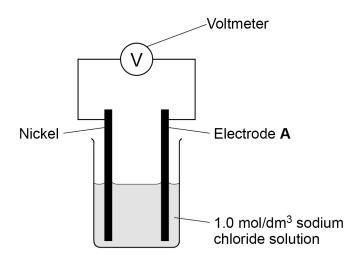
16 0 5 . 5 A student investigated the electrolysis of green copper chromate solution. Figure 4 shows the apparatus. Figure 4 Power supply Negative electrode Positive electrode Filter paper soaked in Drop of green copper chromate solution an electrolyte solution Figure 5 shows the results. Figure 5 Power supply Negative **Positive** electrode electrode Yellow colour Blue colour

Filter paper soaked in an electrolyte solution

Do not write outside the

box

Copper chromate solution contains the ions Cu ²⁺ and CrO ₄ ²⁻		Do not write outside the box
Explain the results shown in Figure 5 .	marks]	БОХ
		10
Turn over for the next guestion		



0 6

A student investigated the voltage produced by different pairs of metal electrodes in a chemical cell.

Figure 6 shows the apparatus.

Figure 6

This is the method used.

- 1. Place a nickel electrode and an electrode made from a different metal (electrode **A**) in 1.0 mol/dm³ sodium chloride solution.
- 2. Measure the voltage produced.
- 3. Repeat using different metals for electrode A.

Table 3 shows the results.

Table 3

Electrode A	Symbol of metal	Voltage in volts
Copper	Cu	-0.59
Magnesium	Mg	2.12
Nickel	Ni	0.00
Silver	Ag	-1.05
Zinc	Zn	0.51

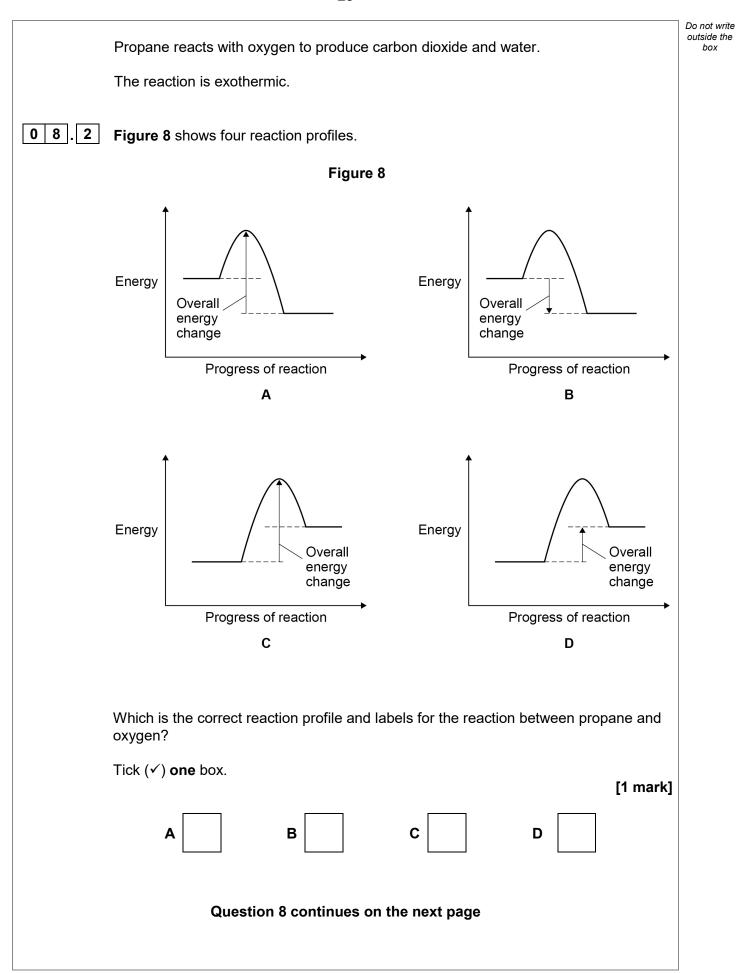
0 6 . 1	Write the symbols of the five metals in Table 2 in order of reactivity	Do not writ outside the box
0 6]. 1	Write the symbols of the five metals in Table 3 in order of reactivity.	Box
	Justify your answer. [3 marks]	
	Most reactive Least reactive	
	Justification	
0 6.2	The voltage produced by a chemical cell depends on the concentration of the electrolyte solution.	
	Plan an experiment to investigate how the voltage produced by a chemical cell varies with the concentration of the electrolyte solution.	
	The following substances are available:	
	 the metal electrodes in Table 3 1.0 mol/dm³ sodium chloride solution pure water. 	
	[6 marks]	

0 6.3	Describe how a hydrogen fuel cell produces a potential difference. [2 marks]	Do not write outside the box
		11

		1
0 7	This question is about iron.	Do not write outside the box
0 7.1	Iron is a metal.	
	Describe how iron conducts thermal energy. [2 marks]	
0 7.2	Pure iron is too soft for many uses.	
	Explain why mixing iron with other metals makes alloys which are harder than pure iron.	
	[3 marks]	
	Question 7 continues on the next page	

2 1

Do not write
outside the
box


0 7.3	When iron reacts with chlorine, 0.12 mol of iron reacts with 0.18 mol of chloring	ne (Cl2).
	Which is the correct equation for the reaction?	[4
	Tick (✓) one box.	[1 mark]
	$Fe + Cl_2 \rightarrow FeCl_2$	
	Fe + $3Cl_2 \rightarrow FeCl_6$	
	$2 \text{Fe} + \text{Cl}_2 \rightarrow 2 \text{FeCl}$	
	$2 \text{Fe} + 3 \text{Cl}_2 \rightarrow 2 \text{FeCl}_3$	
	The most common oxides of iron are Fe ₂ O ₃ and Fe ₃ O ₄	
0 7.4	What is the ratio of the numbers of ions in Fe ₃ O ₄ ?	[1 mark]
	Tick (✓) one box.	
	2 Fe ²⁺ : 1 Fe ³⁺ : 4 O ²⁻	
	1 Fe ²⁺ : 2 Fe ³⁺ : 4 O ²⁻	
	3 Fe ²⁺ : 4 O ²⁻	
	3 Fe ³⁺ : 4 O ²⁻	

0 7 5	Colculate the percentage (9/) by many of iron in Eq. (Do not wi outside to box
0 7 . 5	Calculate the percentage (%) by mass of iron in Fe ₃ O ₄	DOX
	Relative atomic masses (A_r): O = 16 Fe = 56 [3 marks]	
	Percentage by mass of iron =%	
0 7 6	Fe₂O₃ reacts with carbon to produce carbon dioxide.	
	The equation for the reaction is:	
	$2 \operatorname{Fe_2O_3(s)} + 3 \operatorname{C(s)} \rightarrow 4 \operatorname{Fe(s)} + 3 \operatorname{CO_2(g)}$	
	Calculate the volume of carbon dioxide gas at room temperature and pressure that is produced from 40.0 kg of Fe ₂ O ₃ using excess carbon.	
	Relative formula mass (M_r): Fe ₂ O ₃ = 160	
	The volume of 1 mole of any gas at room temperature and pressure is 24 dm ³ . [5 marks]	
	Volume of carbon dioxide = dm ³	15

0 8	This question is about propane (C ₃ H ₈).	Do not write outside the box
	Figure 7 shows the displayed structural formula of propane.	
	Figure 7	
	H H H	
0 8.1	Explain why propane has a low boiling point. [3 marks]	

0 8 . 3

Figure 9 shows the displayed formula equation for the reaction between propane and oxygen.

Figure 9

The overall energy change of this exothermic reaction is 2219 kJ/mol.

Table 4 shows the bond energies of the bonds in the reaction.

Table 4

	C-C	С—Н	0=0	c = 0	O-H
Energy in kJ/mol	347	Х	498	805	464

Calculate the bond energy of the C — H bond (X).	[5 marks]

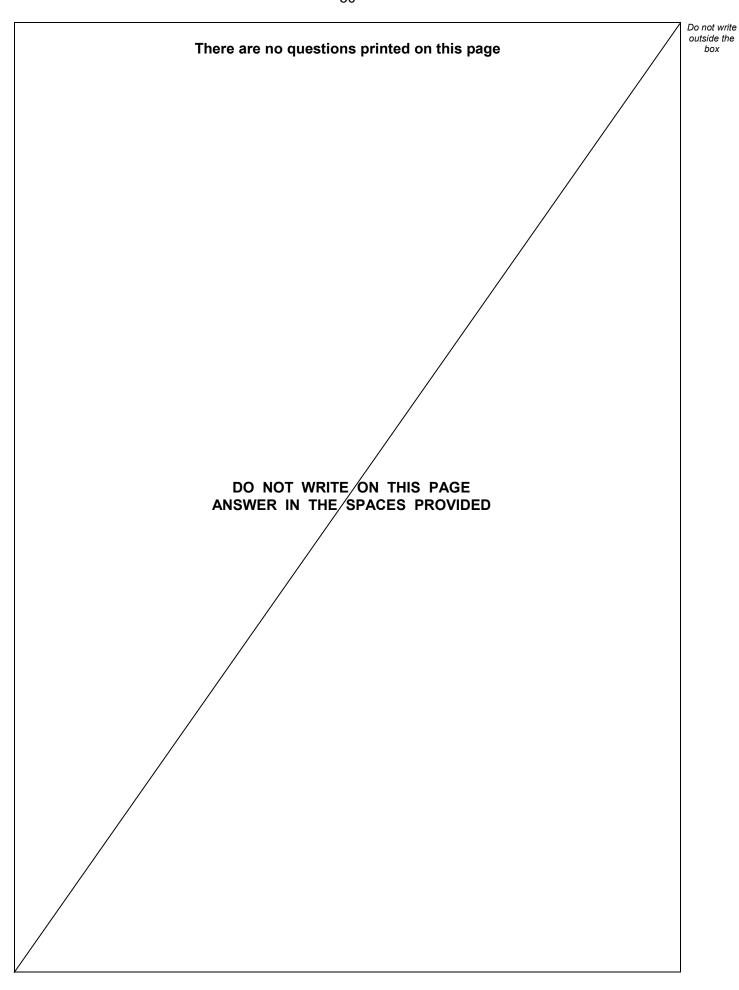
Bond energy of the C — H bond (**X**) = _____

9

kJ/mol

0 9	This question is about acids and their reactions.		Do not write outside the box
	Acids can be either weak or strong.		
0 9 . 1	What is meant by 'a weak acid'?	[2 marks]	
0 9.2	Explain what happens to the pH of an acid as the acid is diluted with water.	[2 marks]	
	Question 9 continues on the next page		

Do not write
outside the
DOX


0 9 . 3	A student does a titration to find the volume of acid needed to neutralise an alkali.
	The student fills a burette with the acid.
	Give three more steps the student must do before adding the acid to the alkali from the burette.
	You should name any equipment used. [3 marks]
	1
	2
	3
0 9.4	The student titrated a solution containing 0.0045 moles of sodium hydroxide with 0.15 mol/dm³ hydrochloric acid.
	The equation for the reaction is:
	NaOH + HCl → NaCl + H2O
	Calculate the volume of hydrochloric acid in cm³ needed in the titration. [2 marks]
	Volume of acid =cm³

0 9.5	A calcium atom is larger than a magnesium atom.	Do not writ outside the box
	Explain why calcium reacts more vigorously than magnesium with hydrochloric acid of the same concentration.	
	[3 marks]	
		12

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2024 AQA and its licensors. All rights reserved.

