

Please write clearly in	n block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

A-level PHYSICS

Paper 3
Section B

Turning points in physics

Thursday 15 June 2023

Morning

Materials

For this paper you must have:

- a pencil and a ruler
- · a scientific calculator
- a Data and Formulae Booklet
- a protractor.

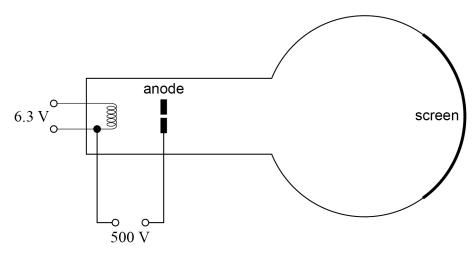
Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- Show all your working.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 35.
- You are expected to use a scientific calculator where appropriate.
- A Data and Formulae Booklet is provided as a loose insert.

Time allowed: The total time for both sections of this paper is 2 hours. You are advised to spend approximately 50 minutes on this section.


For Examiner's Use	
Question	Mark
1	
2	
3	
4	
TOTAL	

Section B

Answer all questions in this section.

0 1 In Figure 1, a beam of electrons travels through the aperture in the anode and hits the screen.

Figure 1

0 1 . 1	Explain how the electrons that form the beam are emitted.	
		[1 mark]

0	1 .	. 2	Show that the maximum speed of the electrons in the beam is about $1.3 \times 10^7 \ m \ s^{-1}$.
			[1 mark]

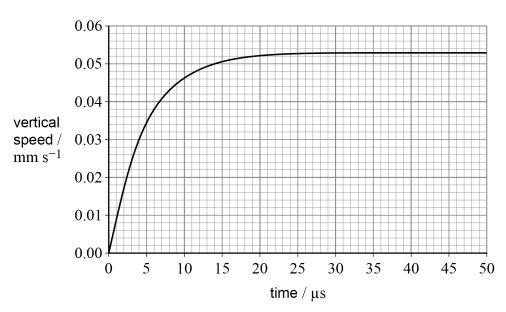
0 1 3	A student suggests that the apparatus can be used to demonstrate the ways	Do not write outside the box
0 1 . 3	A student suggests that the apparatus can be used to demonstrate the wave properties of electrons in the beam, provided that the aperture in the anode has a suitable diameter.	
	Discuss whether the student is correct. Support your answer with a calculation.	
	[3 marks]	
	Question 1 continues on the next page	

Turn over ►

0 1. In 1897, J J Thomson determined a value for the specific charge of an unknown	outside the box
particle.	
The unknown particle is now known to be the electron.	
Describe one method to determine the specific charge of the electron.	
Your answer should include:	
 a description of the apparatus used and the measurements made a description of how the specific charge can be determined using these measurements 	
 an explanation of the conclusion made by Thomson from the value that he determined. 	
[6 ma	arks]

	Do not write
	outside the box
	DOX
	11

Turn over ▶


0 2

In an experiment to determine the electronic charge, a charged oil drop falls from rest between two uncharged plates.

The oil drop has a weight of $1.2\times10^{-14}~N$ and a radius of $6.8\times10^{-7}~m$. Ignore the buoyancy force of the air on the oil drop.

Figure 2 shows the variation of the vertical speed of the oil drop with time.

Figure 2

0 2 . 1 Calculate the viscosity of the air between the plates.

[3 marks]

viscosity = $N s m^{-2}$

0 2 . 2

During the experiment, an electric field is produced between the plates and is adjusted until the oil drop is stationary. $\dot{}$

The electric field strength is $18.8\ kV\ m^{-1}$.

Discuss whether the outcome of the experiment is consistent with the accepted value for electronic charge.

[3 marks]

6

Turn over for the next question

Turn over ▶

0 3	An electromagnetic wave is propagating through space.	Do not write outside the box
	Figure 3 shows the variation of the magnetic flux density of the wave with distance. The magnetic field is in the xz plane. The y -axis is at right-angles to the xz plane.	
	Figure 3	
0 3.1	Draw and label on Figure 3 :	
	 the corresponding electric field the direction of propagation of the wave. [1 mark]	
0 3.2	Which scientist proposed the electromagnetic wave model of light?	
	Tick (✓) one box. [1 mark]	
	Hertz	
	Huygens	
	Maxwell	
	Young	

0 3 . 3	Another theory of the nature of light was proposed by Isaac Newton.	Do not write outside the box
<u> </u>	Describe how Newton's theory was used to explain the refraction of light as it	
	moves from air into glass.	
	[3 marks]	
	Question 3 continues on the next page	

Turn over ▶

0 3.4	Describe a demonstration using visible light that can be performed in a school laboratory to show that Newton's theory is not correct.	Do not write outside the box
	[3 marks]	
		8

Do not write outside the box Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Turn over ▶

	· -
0 4	Einstein developed his theory of special relativity from two postulates. One postulate states that physical laws have the same form in all inertial frames.
0 4 . 1	State the other postulate and explain how it is consistent with the equation:
	$c=\sqrt{rac{1}{\mu_0 arepsilon_0}}$ [2 marks]
	A proton leaves a particle accelerator at point X and moves at a constant speed towards a target at point Y . The speed of the proton is $2.5 \times 10^8 \ m \ s^{-1}$ in the frame of reference of the target. The distance XY in the frame of reference of the proton is $38 \ m$.
0 4.2	Calculate the distance XY in the frame of reference of the target. [2 marks]

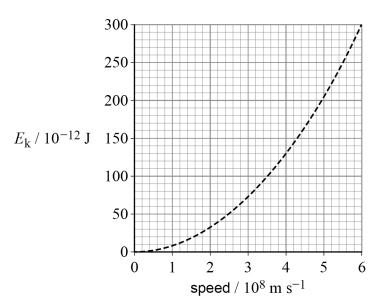
distance XY in the frame of reference of the target = _

m

0 4. **3** Show that the kinetic energy $E_{\rm k}$ of the proton is about $1.2 \times 10^{-10} \, {\rm J}.$

[3 marks]

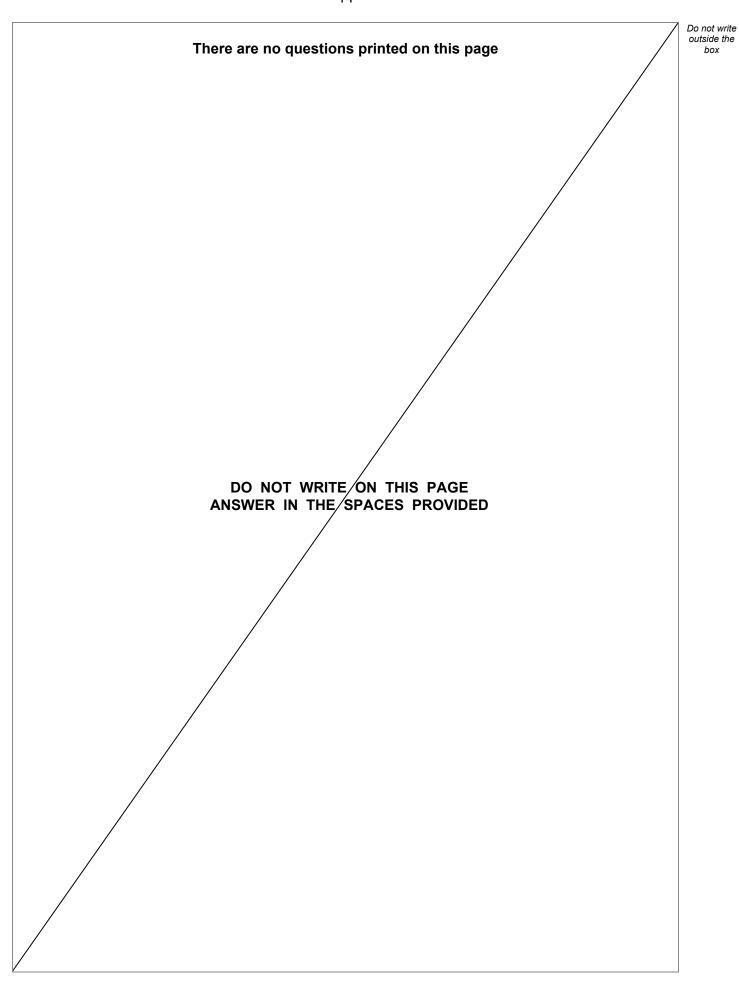
0 4. Sketch on **Figure 4** the variation of E_k with speed v for a proton.


To help you, the dashed line represents

$$E_{\rm k} = \frac{1}{2} m_0 v^2$$

where m_0 is equal to the mass of a proton at rest.

[3 marks]


Figure 4

10

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2023 AQA and its licensors. All rights reserved.

