

/ Please write clearly in	ı block capitals.	
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature	I declare this is my own work.	/

A-level **MATHEMATICS**

Paper 1

Time allowed: 2 hours

Materials

- You must have the AQA Formulae for A-level Mathematics booklet.
- You should have a graphical or scientific calculator that meets the requirements of the specification.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question.
 If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do **not** write outside the box around each page or on blank pages.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 100.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

For Exam	iner's Use
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
TOTAL	

Answer all questions in the spaces provided.

A curve is defined by the parametric equations 1

$$x = \cos \theta$$
 and $y = \sin \theta$ where $0 \le \theta \le 2\pi$

Which of the options shown below is a Cartesian equation for this curve?

Circle your answer.

[1 mark]

$$\frac{y}{x} = \tan \theta$$

$$x^2 + y^2 = 1$$

$$\frac{y}{x} = \tan \theta$$
 $x^2 + y^2 = 1$ $x^2 - y^2 = 1$ $x^2y^2 = 1$

$$x^2y^2 = 7$$

A periodic sequence is defined by 2

$$U_n = (-1)^n$$

State the period of the sequence.

Circle your answer.

[1 mark]

3 The curve

$$y = \log_4 x$$

is transformed by a stretch, scale factor 2, parallel to the y-axis.

State the equation of the curve after it has been transformed.

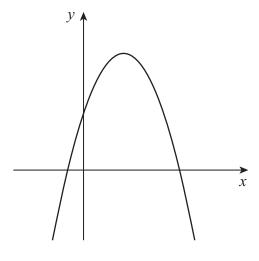
Circle your answer.

[1 mark]

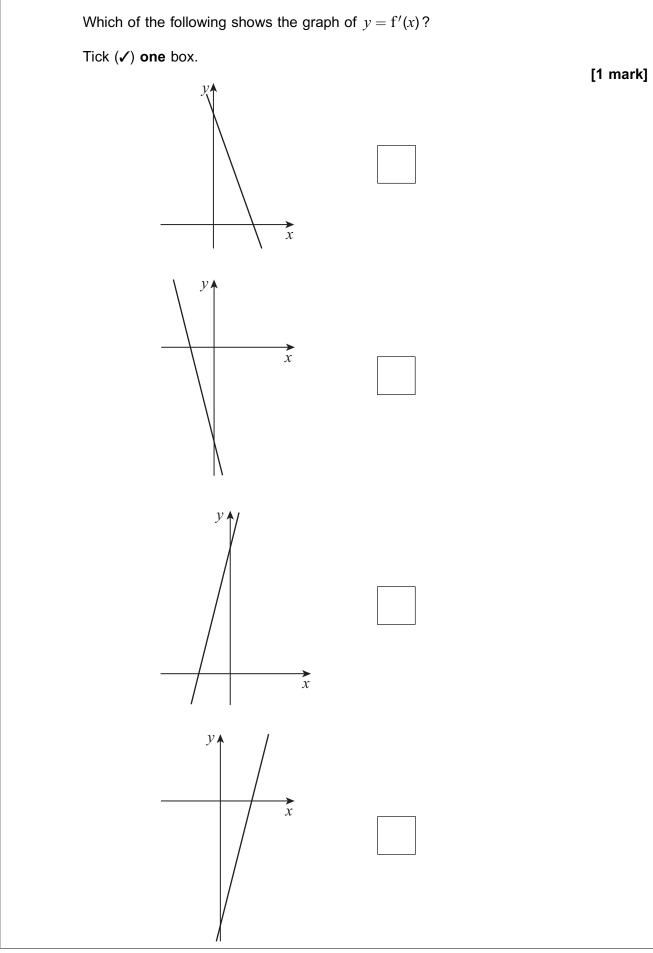
$$y = \frac{1}{2}\log_4 x$$
 $y = 2\log_4 x$ $y = \log_4 2x$ $y = \log_8 x$

Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

4 The graph of


$$y = f(x)$$

where

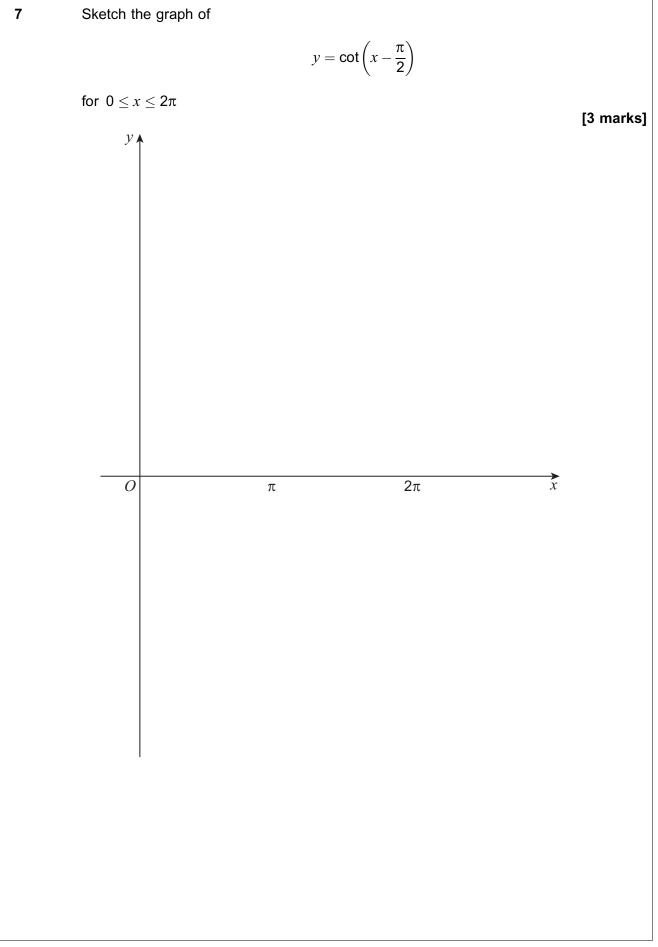

$$f(x) = ax^2 + bx + c$$

is shown in Figure 1.

Figure 1

Do	not	writ
ou	tside	e the
	bo	X

5	Find an equation of the tangent to the curve	
	$y = (x-2)^4$	
	at the point where $x = 0$	[3 marks]



Do not write
outside the
box

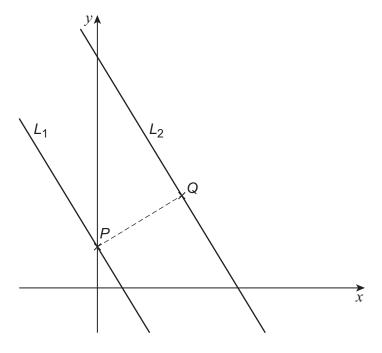
Find the first two terms, in ascending powers of x , of the binomial expansion of			
$(1-\frac{x}{2})^{\frac{1}{2}}$			
\ /	[2 marks]		
where A, B and C are constants to be found.	[4 marks]		
	Hence, for small values of x , show that $\sin 4x + \sqrt{\cos x} \approx A + Bx + Cx^2$ where A , B and C are constants to be found.		

Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Turn over ▶

8 The lines L_1 and L_2 are parallel.

 L_1 has equation


$$5x + 3y = 15$$

and L_2 has equation

$$5x + 3y = 83$$

 L_1 intersects the *y*-axis at the point *P*.

The point Q is the point on L_2 closest to P, as shown in the diagram.

0	(-) (:)	Find the	acardinatas	۰ŧ	\sim
ĸ	(a) (I)	Find the	coordinates	OΤ	(J

	[5 marks]
·	

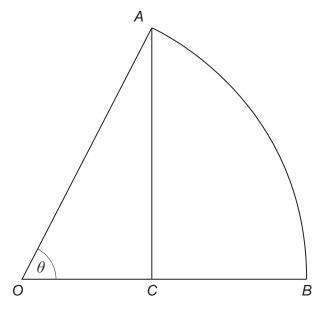
		-
8 (a) (ii)	Hence show that $PQ = k\sqrt{34}$, where k is an integer to be found.	
		[2 marks]
		[

Turn over ▶

8 (b)	A circle, C , has centre $(a, -17)$.	
	L_1 and L_2 are both tangents to C .	
8 (b) (i)	Find a.	[2 marks]
8 (b) (ii)	Find the equation of C.	[2 marks]

Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Turn over ▶


9	The first three terms of an arithm	etic sequence are g	iven by	
	2x + 5	5 <i>x</i> + 1	6 <i>x</i> + 7	
9 (a)	Show that $x = 5$ is the only value	e which gives an ari	thmetic sequence.	[3 marks]
9 (b) (i)	Write down the value of the first	term of the sequenc	e.	[1 mark]
9 (b) (ii)	Find the value of the common dif	ference of the seque	ence.	[1 mark]

The sum of the first N terms of the arith	metic sequence is S_N where	
S_{Λ}	_V < 100 000	
S_{N+}	1 > 100 000	
Find the value of N .		
		[4 marks]

10 The diagram shows a sector of a circle *OAB*.

The point C lies on OB such that AC is perpendicular to OB.

Angle AOB is θ radians.

10 (a) Given the area of the triangle OAC is half the area of the sector OAB, show that

[4 marks]	2θ	heta=sir	

Do not write
outside the
hov

10 (b)	Use a suitable change of sign to show that a solution to the equation	
	$ heta=\sin 2 heta$	
	lies in the interval given by $ heta \in \left[rac{\pi}{5} , rac{2\pi}{5} ight] $	
		[2 marks]

Question 10 continues on the next page

Turn over ▶

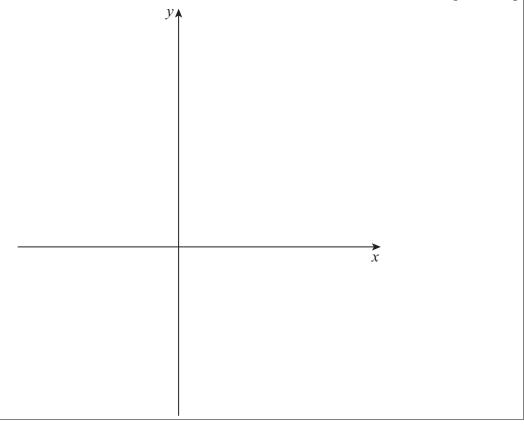
10 (c)	The Newton-Raphson method is used to find an approximate solution to the equation
	$ heta=\sin 2 heta$
10 (c) (i)	Using $\theta_1=\frac{\pi}{5}$ as a first approximation for θ apply the Newton-Raphson method twice to find the value of θ_3
	Give your answer to three decimal places. [3 marks]
10 (c) (ii)	Explain how a more accurate approximation for θ can be found using the Newton-Raphson method. [1 mark]

10 (c) (iii)	Explain why using $\theta_1=\frac{\pi}{6}$ as a first approximation in the Newton-Raphson does not lead to a solution for θ .	method [2 marks]
	Turn over for the next question	

11	The	polynomial	p(x)	is	given	by

$$p(x) = x^3 + (b+2)x^2 + 2(b+2)x + 8$$

where b is a constant.


11 (a) Use the factor theorem to prove that (x + 2) is a factor of p(x) for all values of b.

[3 marks]

- **11 (b)** The graph of y = p(x) meets the x-axis at exactly two points.
- **11 (b) (i)** Sketch a possible graph of y = p(x)

[3 marks]

Do not write
outside the
have

11 (b) (ii)	Given $p(x)$ can be written as		
		$p(x) = (x+2)(x^2 + bx + 4)$	
	find the value of b .		
	Fully justify your answer.		[4 marks]

Turn over for the next question

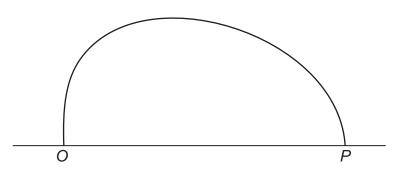
Turn over ▶

ratio $\frac{1}{2}$
2
[2 marks]
[2 marks]

Do	not	write
ou	tside	the

12 (b)	Find the smallest positive exact value of θ , in radians , which satisfies the equation
	$\sum_{n=0}^{\infty} (\cos \theta)^n = 2 - \sqrt{2}$
	n=0 [4 marks]

Turn over for the next question



Turn over ▶

Figure 2 shows the approximate shape of the vertical cross section of the entrance to a cave. The cave has a horizontal floor.

The entrance to the cave joins the floor at the points O and P.

Figure 2

Garry models the shape of the cross section of the entrance to the cave using the equation

$$x^2 + y^2 = a\sqrt{x} - y$$

where a is a constant, and x and y are the horizontal and vertical distances respectively, in metres, measured from O.

13 (a) The distance *OP* is 16 metres.

id the value of a that Garry should use in the model.	[2 marks

,	Show that the maximum height of the cave above <i>OP</i> is approximately 10.5 metres. [6 marks]
-	
-	
_	
-	
-	
-	
_	
-	
-	
_	
-	
-	
-	
-	
-	
-	
(Suggest one limitation of the model Garry has used
•	Suggest one limitation of the model Garry has used. [1 mark]
-	



Turn over ▶

14 The region bounded by the curve

$$y = (2x - 8) \ln x$$

and the x-axis is shaded in the diagram below.

14 (a) Use the trapezium rule with 5 ordinates to find an estimate for the area of the shaded region.

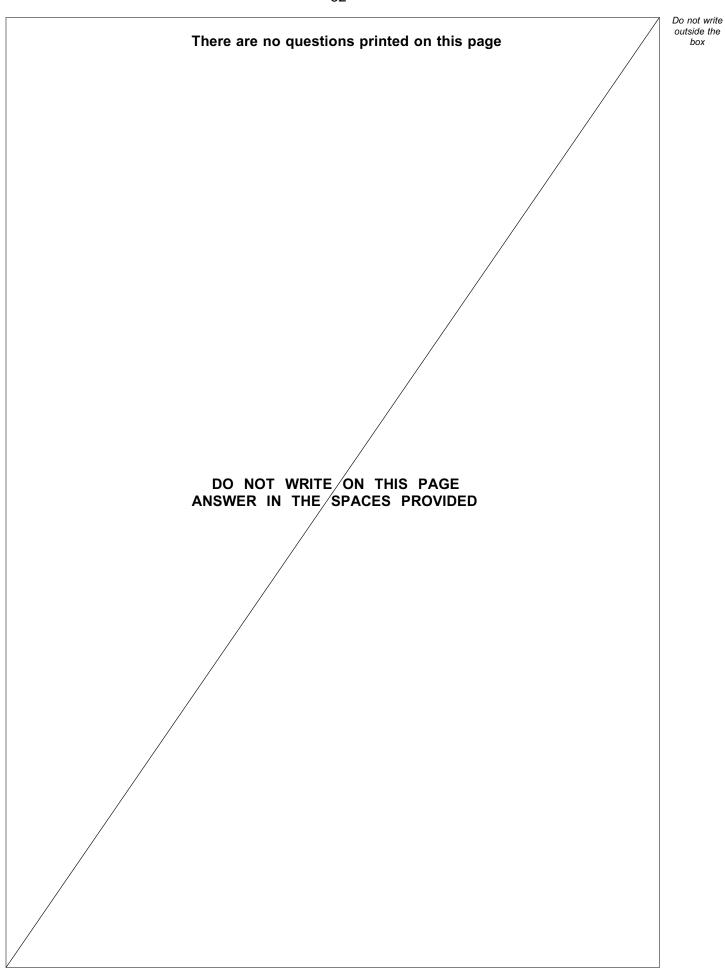
Give your answer correct to three significant figures.	[3 marks

14 (b)	Show that the exact area is given by	
	33	
	$32 \ln 2 - \frac{33}{2}$	
	2	
	Fully justify your answer.	
		[6 marks]

15 (2)	Given that	Do not writ
15 (a)		box
	$y = \operatorname{cosec} \theta$	
15 (a) (i)	Express y in terms of $\sin \theta$. [1 mar	k]
		-
		_
		_
		_
15 (a) (ii)	Hence, prove that	
()		
	$\frac{\mathrm{d}y}{\mathrm{d}\theta} = -\csc\theta\cot\theta$	- 7
	[3 mark	sj
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		-
		-
		_
		_
		_

Do not write
outside the
box

15 (a) (iii)	Show that			
		$\frac{\sqrt{y^2 - 1}}{y} = \cos \theta$	for $0< heta<rac{\pi}{2}$	[3 marks]


15 (b) (i)	Use the substitution
	$x = 2 \operatorname{cosec} u$
	to show that
	ſ 1
	$\int \frac{1}{x^2 \sqrt{x^2 - 4}} dx \qquad \text{for } x > 2$
	can be written as
	$k\int \sin u du$
	where k is a constant to be found.
	[6 marks]
	·

Do	not	write
ou	tside	e the
	L -	

15 (b) (ii)	Hence, show		
	$\int \frac{1}{x^2 \sqrt{x^2 - 4}} \mathrm{d}x = \frac{\sqrt{x^2 - 4}}{4x} + c$	for $x > 2$	
	where c is a constant.		[3 marks]
	END OF QUESTIONS		

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

There are no questions printed on this page

Do not write outside the

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2022 AQA and its licensors. All rights reserved.

