

Please write clearly ir	ı block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

A-level CHEMISTRY

Paper 2 Organic and Physical Chemistry

Time allowed: 2 hours

Materials

For this paper you must have:

- the Periodic Table/Data Booklet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do **not** write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- · All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.

For Examiner's Use			
Question	Mark		
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
TOTAL			

	Do not write outside the box
arks]	

	Answer all questions in the spaces provided.
0 1	An acidified solution of butanone reacts with iodine as shown.
	$CH_3CH_2COCH_3 + I_2 \rightarrow CH_3CH_2COCH_2I + HI$
0 1.1	Draw the displayed formula for CH ₃ CH ₂ COCH ₂ I
	Give the name of CH ₃ CH ₂ COCH ₂ I [2 marks]
	Displayed formula
	Name

Do not w	rite
outside	the
box	

0	1		2	The rate equation for the reaction	is
---	---	--	---	------------------------------------	----

 $rate = k[CH_3CH_2COCH_3][H^+]$

Table 1 shows the initial concentrations used in an experiment.

Table 1

	CH ₃ CH ₂ COCH ₃	l ₂	H⁺
Initial concentration / mol dm ⁻³	4.35	0.00500	0.825

The initial rate of reaction in this experiment is 1.45×10⁻⁴ mol dm⁻³ s⁻¹

Calculate the value of the rate constant, k, for the reaction and give its units.

[3 marks]

k			
_			
Units			

0 1.3 Calculate the initial rate of reaction when all of the initial concentrations are halved. [1 mark]

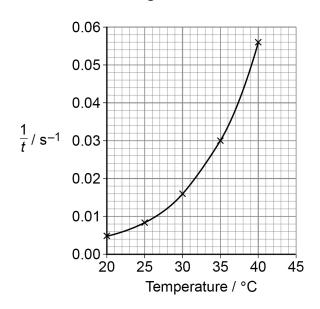
Initial rate of reaction _____ mol dm⁻³ s⁻¹

Question 1 continues on the next page

Do not write outside the

0 1 . 4

An experiment was done to measure the time, t, taken for a solution of iodine to react completely when added to an excess of an acidified solution of butanone.


Suggest an observation used to judge when all the iodine had reacted.

[1 mark]

The experiment was repeated at different temperatures.

Figure 1 shows how $\frac{1}{t}$ varied with temperature for these experiments.

Figure 1

Do not write outside the box

0 1.5	Describe and explain the shape of the graph in Figure 1 .	[3 marks]
0 1 . 6	Deduce the time taken for the reaction at 35 °C	[1 mark]
	Time	s
	Question 1 continues on the next page	

Do not write outside the

0 1 . 7

For a different reaction, **Table 2** shows the value of the rate constant at different temperatures.

Table 2

Experiment	Temperature / K	Rate constant / s ⁻¹
1	$T_1 = 303$	$k_1 = 1.55 \times 10^{-5}$
2	$T_2 = 333$	$k_2 = 1.70 \times 10^{-4}$

This equation can be used to calculate the activation energy, Ea

$$\ln\left(\frac{k_1}{k_2}\right) = \frac{E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

Calculate the value, in kJ mol^{-1} , of the activation energy, E_a

The gas constant, $R = 8.31 \text{ J K}^{-1} \text{mol}^{-1}$

[5 marks]

 E_a kJ mol⁻¹

	7		
0 1.8	Name and outline the mechanism for the reaction of butanone w dilute acid.	ith KCN followed by	Do not write outside the box
		[5 marks]	
	Name of mechanism		
	Outline of mechanism		
			21
	The state of the s		
	Turn over for the next question		

Do not write
outside the
box

0 2	Tetrafluoroethene is made from chlorodifluoromethane in this reversible reaction.			
	$2 \operatorname{CHClF}_2(g) \rightleftharpoons \operatorname{C}_2\operatorname{F}_4(g) + 2 \operatorname{HCl}(g)$	$\Delta H = +128 \text{ kJ mol}^{-1}$		
	A 2.00 mol sample of $CHClF_2$ is placed in a container of volume when equilibrium is reached, the mixture contains 0.270 mc			
0 2.1	Calculate the amount, in moles, of C_2F_4 and of HCl in the ed	quilibrium mixture. [2 marks]		
	Amount of C ₂ F ₄	mol		
	Amount of HCl	mol		
0 2.2	Give an expression for K_c for this equilibrium.	[1 mark]		
	<i>K</i> _c			

0 2 . 3	Calculate a value for K _c	Do not write outside the box
	Give its units.	
	[3 marks]	
	K _c Units	
0 2 . 4	State and explain the effect of using a higher temperature on the equilibrium yield of tetrafluoroethene.	
	[3 marks]	
	Effect on yield	
	Explanation	
	Question 2 continues on the next page	
	Question 2 continues on the next page	

0 2 . 5	Chemists provided evidence that was used to support a ban on the use of chlorodifluoromethane as a refrigerant.		Do not write outside the box
	Many refrigerators now use pentane as a refrigerant.		
	State the environmental problem that chlorodifluoromethane can cause.		
	Give one reason why pentane does not cause this problem.	[2 marks]	
	Environmental problem		
	Reason why pentane does not cause this problem		
			11

0 3	This question is about 2-methylbut-1-ene.
0 3.1	Name the mechanism for the reaction of 2-methylbut-1-ene with concentrated sulfuric acid.
	Outline the mechanism for this reaction to form the major product. [5 marks]
	Name of mechanism
	Outline of mechanism to form major product
0 3.2	Draw the structure of the minor product formed in the reaction in Question 03.1
	Explain why this is the minor product. [3 marks]
	Structure of minor product
	Explanation

0 3.3	Draw the skeletal formula of a functional group isomer of 2-methylbut-1-ene. [1 mark]	Do not write outside the box
0 3.4	2-methylbut-1-ene can form a polymer. State the type of polymerisation. Draw the repeating unit for the polymer formed. [2 marks] Type of polymerisation Repeating unit	

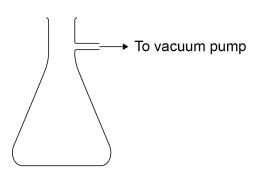
11

0 4	Proteins are polymers made from amino acids. Part of the structure of a protein is shown.
	-Cys-Ser-Asp-Phe-
	Each amino acid in the protein is shown using the first three letters of its name.
0 4.1	Identify the type of protein structure shown. [1 mark]
	Tick (✓) one box.
	Primary
	Secondary
	Tertiary
0 4.2	Draw a structure for the –Cys–Ser– section of the protein. Use the Data Booklet to help you answer this question. [2 marks]
	Question 4 continues on the next page

Do not wr
Do not wri outside th box

0 4 . 3	Name the other substance formed when two amino acids react together to form part of a protein chain.
	[1 mark]
	The general structure of an amino acid is shown.
	H ₂ N—CH—COOH
	R
	R represents a group that varies between different amino acids. R groups can interact and contribute to protein structure.
0 4.4	Explain why the strength of the interaction between two cysteine R groups differs from the strength of the interaction between a serine R group and an aspartic acid R group.
	Use the Data Booklet to help you answer this question. [4 marks]
	,——————————————————————————————————————
0 4.5	Deduce the type of interaction that occurs between a lysine R group and an
	aspartic acid R group. [1 mark]
	-

9


0 5	This question is about the preparation of hexan-2-ol. Hexan-2-ol does not mix with water and has a boiling point of 140 °C		
	Hexan-2-ol can be prepared from hex-1-ene using this method.		
	a Measure out 11.0 cm ³ of hex-1-ene into a boiling tube in an ice bath.		
	b Carefully add 5 cm ³ of concentrated phosphoric acid to the hex-1-ene.		
	c After 5 minutes add 10 cm³ of distilled water to the mixture and transfer the		
	boiling tube contents to a separating funnel.		
	d Shake the mixture and allow it to settle.		
	e Discard the lower (aqueous) layer.		
	f Add a fresh 10 cm ³ sample of distilled water and repeat steps d and e .		
	g Transfer the remaining liquid to a beaker.		
	h Add 2 g of anhydrous magnesium sulfate and allow to stand for 5 minutes.		
	i Filter the mixture under reduced pressure.		
	j Distil the filtrate and collect the distillate that boils in the range 130–160 °C		
0 5.1	It is important to wear eye protection and a lab coat when completing this experi	ment.	
	Suggest, with a reason, one other appropriate safety precaution for this experiment [2 mar		
	Precaution		
	Reason		
0 5.2	Give a reason for adding the distilled water in steps c and f .	mark]	
0 5 . 3	Give a reason for adding anhydrous magnesium sulfate in step h . [1	mark]	
	Question 5 continues on the next page		

ırks]	Do not write outside the box
ected	

0 5.4 Complete and label the diagram of the apparatus used to filter the mixture under reduced pressure in step i.

[2 marks]

0 5. Identify the most likely organic impurity, other than hex-1-ene, in the distillate collected in step j.

Suggest one reason why it could be difficult to remove this impurity.

[2 marks]

Impurity ______Reason _____

0 5 . 6	Calculate the mass, in g, of hexan-2-ol formed from 11.0 cm³ of hex-1-ene if the	Do not write outside the box
	yield is 31.0%	
	Give your answer to 1 decimal place.	
	Density of hex-1-ene = 0.678 g cm^{-3} [4 marks]	
	•	
	Mass g	12

Do not write outside the

0 6

This question is about compound X with the empirical formula C₂H₄O

Figure 2 shows the infrared spectrum of X.

Figure 3 shows the ¹³C NMR spectrum of X.

The ¹H NMR spectrum of **X** shows four peaks with different chemical shift values. **Table 3** gives data for these peaks.

Figure 2

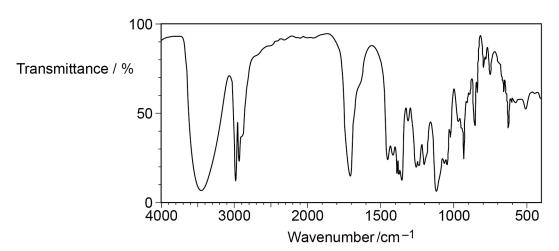


Figure 3

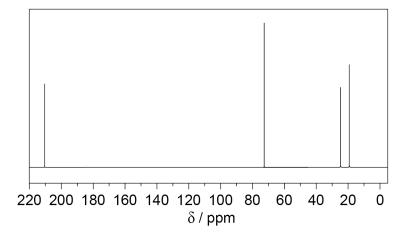
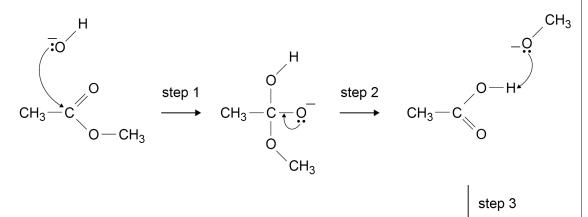


Table 3

Chemical shift δ / ppm	3.9	3.7	2.1	1.2
Splitting pattern	quartet	singlet	singlet	doublet
Integration value	1	1	3	3

; t	Show how information from Figure 2 , Figure 3 and Table 3 can be used to the structure of compound X .	deduce
·	ino di dottaro di dompodina 7.	[6 marks]
-		
-		
_		
_		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
_		
_		
-		
-		
-		
-		
-		
-		
	The answer space for this question continues on the next page	

Do not write outside the
box
 -
_
 -
-
_
-
-
-
-
-
-
_
-
-
-
-
-
-
_
-
-
-
-
-
- <u>-</u>
6



Do not write outside the box

0 7 This question is about esters.

Figure 4 shows an incomplete mechanism for the reaction of an ester with aqueous sodium hydroxide.

Figure 4

0 7.1 Add three curly arrows to complete the mechanism in Figure 4.

[3 marks]

0 7 . 2 Name the type of reaction shown in **Figure 4**.

[1 mark]

0 7. Deduce the role of the CH₃O⁻ ion in step 3 shown in Figure 4.

[1 mark]

0 7 . 4 A triester in vegetable oil reacts with sodium hydroxide in a similar way.

Give a use for a product of this reaction.

[1 mark]

6

		_
0 8	Benzene reacts with methanoyl chloride (HCOCl) in the presence of a catalyst.	Do not write outside the box
0 8.1	Give an equation for the overall reaction when benzene reacts with methanoyl chloride.	
	Name the organic product. [2 marks]	
	Name	
0 8.2	Identify the catalyst needed in this reaction.	
	Give an equation to show how the catalyst is used to form the electrophile, [HCO] ⁺ [2 marks]	
	Catalyst	
	Equation	
0 8.3	Outline the mechanism for the reaction of benzene with the electrophile, [HCO] ⁺ [3 marks]	
		7

Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Turn over ▶

Do not write
outside the
box

0 9	This question is about olive oil.
	A sample of olive oil is mainly the unsaturated fat Y mixed with a small amount of inert impurity.
	The structure of Y in the olive oil is shown. Y has the molecular formula $C_{57}H_{100}O_6$ ($M_r = 880$).
	COO-CH2
	COO-CH
	COO-CH ₂
	The amount of Y is found by measuring how much bromine water is decolourised by a sample of oil, using this method.
	 Transfer a weighed sample of oil to a 250 cm³ volumetric flask and make up to the mark with an inert organic solvent. Titrate 25.0 cm³ samples of the olive oil solution with 0.025 mol dm⁻³ Br₂(aq).
0 9 . 1	A suitable target titre for the titration is 30.0 cm ³ of 0.025 mol dm ⁻³ Br ₂ (aq).
	Justify why a much smaller target titre would not be appropriate.
	Calculate the amount, in moles, of bromine in the target titre. [2 marks]
	Justification
	Amount of bromine mol
	Amount of profiline fillor

Do not write outside the box

0 9.2	Calculate a suitable mass of olive oil to transfer to the volumetric flask using you answer to Question 09.1 and the structure of Y . Assume that the olive oil contains 85% of Y by mass.	our
	(If you were unable to calculate the amount of bromine in the target titre, you s assume it is 6.25×10^{-4} mol. This is not the correct amount.)	hould
		marks]
	Mass of olive oil	g
	Question 9 continues on the next page	

D	on c	τν	vrite	
0	utsia	le	the	
	hr	١v		

The olive oil solution can be prepared using this method.

- Place a weighing bottle on a balance and record the mass, in g, to 2 decimal places.
- Add olive oil to the weighing bottle until a suitable mass has been added.
- Record the mass of the weighing bottle and olive oil.
- Pour the olive oil into a 250 cm³ volumetric flask.
- Add organic solvent to the volumetric flask until it is made up to the mark.
- Place a stopper in the flask and invert the flask several times.

0 9.3	Suggest an extra step to ensure that the mass of olive oil in the solution is raccurately.	ecorded
	Justify your suggestion.	[2 marks]
	Extra step	
	Justification	
0 9.4	State the reason for inverting the flask several times.	[1 mark]

Do not write outside the

0	9		5
---	---	--	---

A sample of the olive oil was dissolved in methanol and placed in a mass spectrometer. The sample was ionised using electrospray ionisation. Each molecule gained a hydrogen ion (H⁺) during ionisation.

The spectrum showed a peak for an ion with $\frac{m}{z} = 345$ formed from an impurity in the olive oil.

The ion with $\frac{m}{z}$ = 345 was formed from a compound with the empirical formula C₅H₁₀O

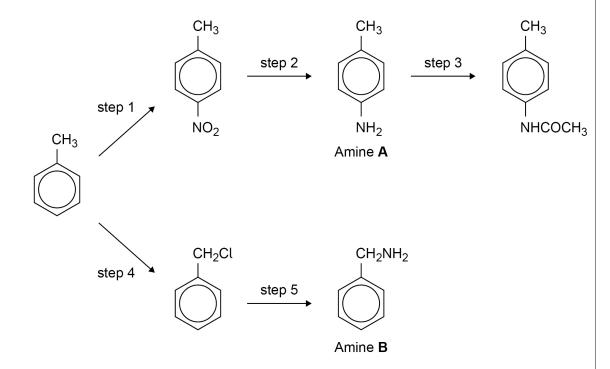
Deduce the molecular formula of this compound.

[2 marks]

Show your working.

Molecular formula

Turn over for the next question


Turn over ▶

12

Do not write
outside the
hox

1	0	This question is about the reaction scheme shown
		=

1 0 . 1	State the reagents needed for step 1 and the reagents needed for step 2.	[3 marks]
	step 1	
	step 2	

1 0 . 2	Give the name of the mechanism for the reaction in step 3.	
		[1 mark

			Do not write
1 0 . 3	Name the reagent for step 4.		outside the
	State a necessary condition for step 4.	[2 marks]	
	Reagent		
	Condition		
1 0 . 4	Amine A is formed in step 2 and amine B is formed in step 5 .		
	Explain why the yield of B in step 5 is less than the yield of A in step 2 .	[2 marks]	
1 0 . 5	Explain why amine B is a stronger base than amine A .		
		[2 marks]	
			10

END OF QUESTIONS

There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2022 AQA and its licensors. All rights reserved.

