www.Educate-UK.net

A-level BIOLOGY 7402/1

Paper 1

Mark scheme

June 2022

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aga.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2022 AQA and its licensors. All rights reserved.

Mark scheme instructions to examiners

1. General

The mark scheme for each question shows:

- the marks available for each part of the question
- the total marks available for the question
- the typical answer or answers which are expected
- extra information to help the examiner make his or her judgement and help to delineate what is acceptable or not worthy of credit or, in discursive answers, to give an overview of the area in which a mark or marks may be awarded.

The extra information in the 'Comments' column is aligned to the appropriate answer in the left-hand part of the mark scheme and should only be applied to that item in the mark scheme.

At the beginning of a part of a question a reminder may be given, for example: where consequential marking needs to be considered in a calculation; or the answer may be on the diagram or at a different place on the script.

In general the right-hand side of the mark scheme is there to provide those extra details which confuse the main part of the mark scheme yet may be helpful in ensuring that marking is straightforward and consistent.

2. Emboldening

- 2.1 In a list of acceptable answers where more than one mark is available 'any **two** from' is used, with the number of marks emboldened. Each of the following bullet points is a potential mark.
- **2.2** A bold **and** is used to indicate that both parts of the answer are required to award the mark.
- 2.3 Alternative answers acceptable for the same mark are indicated by the use of **OR**. Different terms in the mark scheme are shown by a /; eg allow smooth / free movement.

3. Marking points

3.1 Marking of lists

This applies to questions requiring a set number of responses, but for which students have provided extra responses. The general principle to be followed in such a situation is that 'right + wrong = wrong'.

Each error / contradiction negates each correct response. So, if the number of errors / contradictions equals or exceeds the number of marks available for the question, no marks can be awarded.

However, responses considered to be neutral (often prefaced by 'Ignore' in the 'Comments' column of the mark scheme) are not penalised.

3.2 Marking procedure for calculations

Full marks can be given for a correct numerical answer, without any working shown.

However, if the answer is incorrect, mark(s) can usually be gained by correct substitution / working and this is shown in the 'Comments' column or by each stage of a longer calculation.

3.3 Interpretation of 'it'

Answers using the word 'it' should be given credit only if it is clear that the 'it' refers to the correct subject.

3.4 Errors carried forward, consequential marking and arithmetic errors

Allowances for errors carried forward are most likely to be restricted to calculation questions and should be shown by the abbreviation ECF or consequential in the mark scheme.

An arithmetic error should be penalised for one mark only unless otherwise amplified in the mark scheme. Arithmetic errors may arise from a slip in a calculation or from an incorrect transfer of a numerical value from data given in a question.

3.5 Phonetic spelling

The phonetic spelling of correct scientific terminology should be credited **unless** there is a possible confusion with another technical term.

3.6 Brackets

(.....) are used to indicate information which is not essential for the mark to be awarded but is included to help the examiner identify the sense of the answer required.

3.7 Ignore / Insufficient / Do <u>not</u> allow

Ignore or insufficient is used when the information given is irrelevant to the question or not enough to gain the marking point. Any further correct amplification could gain the marking point.

Do **not** allow means that this is a wrong answer which, even if the correct answer is given, will still mean that the mark is not awarded.

Question	Marking Guidance	Mark	Comments
01.1	Structure 1. Nuclear envelope and pores OR Double membrane and pores; 2. Chromosomes/chromatin OR DNA with histones; 3. Nucleolus/nucleoli; Function 4. (Holds/stores) genetic information/material for polypeptides (production) OR (Is) code for polypeptides; 5. DNA replication (occurs); 6. Production of mRNA/tRNA OR Transcription (occurs); 7. Production of rRNA/ribosomes;	4 max (4 x AO1)	Max 2 for structure or function 1. Ignore porous for pores 2 Ignore genetic material/information 2. Accept nucleoplasm 2. Ignore promoter regions OR genes OR alleles Accept regulation of gene expression 4. Accept protein OR amino acid sequences OR primary structure for polypeptides 6 Ignore mRNA leaves nucleus
Question	Marking Guidance	Mark	Comments
01.2	Cellulose (plants) and Chitin (fungi);	1 (AO1)	For fungi, accept N-acetylglucosamine
Question	Marking Guidance	Mark	Comments
01.3	Individual organisms could not be identified/separated OR Too small/numerous to count individuals OR Too time consuming;	1 (AO2)	Ignore too difficult to identify/distinguish different species Ignore too difficult to count unless qualified Accept reference to fungi for plants

Question	Marking Guidance	Mark	Comments
01.4	Correct answer for 2 marks, 0.7– 0.71;; Accept for 1 mark, 0.29 – 0.3 (correct calculation not subtracted from 1) OR 120 (correct total shoot biomass)	2 (2 x AO2)	A common correct answer is 0.707 Accept numbers rounding down to 0.71

Question	Marking Guidance	Mark	Comments
	Plant (bio)diversity is lower on (previously used) crop land OR	2 (2 x AO3)	Assume index of diversity refers to plants
	Plant (bio)diversity is higher on land not used (previously to grow crops);		If no context is given assume answer refers to land previously
01.5	2. Farming reduces (bio)diversity of fungi		used to grow crops
	OR Farming reduces fungal species richness;		Accept farming reduces plant (bio)diversity
			2. Accept farming reduces number of fungal species

Question	Marking Guidance	Mark	Comments
02.1	 (Some bacteria have) alleles for resistance; (Exposure to) antibiotics is the selection pressure OR Non-resistant bacteria die OR Resistant bacteria survive/reproduce; More antibiotics used in hospital (compared with elsewhere) OR Patients have weakened immune systems OR (So) high frequency of resistance allele (in bacterial population); 	3 (3 x AO1)	 and 2 Reject reference to immunity only once and 3. Accept gene for allele Reject if antibiotics cause production of resistance gene/allele Accept strain for bacteria Ignore antibiotics prescribed when not needed OR antibiotic course is not finished Ignore defence system, for immune system Accept proportion/percentage for frequency
Question	Marking Guidance	Mark	Comments
02.2	Maltose;	1 (AO1)	Reject maltase Accept phonetic spelling eg moltose/maltosse/maltoze/moltoes/maltoez

Question	Marking Guidance	Mark	Comments
	1. Wash hands with soap	3 max	Ignore sterilise hands OR surfaces
	OR	(3 x	Accept sanitise for disinfect
	Disinfect surfaces;	AO1)	Accept antiseptic /antimicrobial/alcohol (wipes)
	Use sterile pipette/syringe (to transfer bacteria);		and 7 Accept a named type of disinfectant
	3. (Remove bottle lid and) flame neck of bottle;		2. Reject loop
	4. Lift lid of (agar) plate at an		2. Accept use unopened pipette/syringe for sterile
02.3	angle; 5. Work close to upward air		Accept lift lid slightly OR keep lid over plate
	movement;		4. Ignore work quickly with lid off
	6. Use sterile spreader;		5 Reject air movements sterilise air
	7. Place pipette/spreader into disinfectant (immediately after		5 Accept convection current for air movement
	use);		6. Accept loop for spreader
			6. Examples of sterilising technique eg, flame OR dip in alcohol and flame OR dip in disinfectant and rinse (in sterile water)

Question	Marking Guidance	Mark	Comments
02.4	For 1. Resistant bacteria grow faster with trehalose; 2. (So) resistant bacteria (likely to) increase in frequency in the population/people; 3. Resistant bacteria (likely to) outcompete non-resistant bacteria; Against 4. In laboratory not in people; 5. Other disaccharides (in the diet) might affect bacteria; 6. Other bacterial species (in the body) might affect bacteria; 7. No stats test to see if difference/increase is significant; 8. No data for both resistant and non-resistant bacteria growing together; 9. No data for different concentrations of trehalose;	3 max (3 x AO3)	Max 2 if only 'For' or only 'Against' marks 1, 2, 3, 4 and 5 Accept C. difficile/strain for bacteria 2. Accept 'percentage/proportion' for 'frequency' 5. Accept carbohydrate OR polysaccharide OR sugar, for disaccharide 7. Accept 'is not due to chance' for 'is significant' 7. Ignore standard deviation/SD (as not a stats test) 7 Reject 'to see if results are significant'

Question	uestion Marking Guidance		Comments
03.1	For 1 mark, accept any two from Prokaryotes have No membrane-bound organelles/correct example OR (Single,) circular/loop DNA (in cytoplasm) OR DNA free in cytoplasm OR DNA not associated with proteins/histones OR Murein/peptidoglycan (in) cell wall;	1 (AO1)	Apply list rule Accept (prokaryotes) only have smaller ribosomes /60S/70S Accept mesosome Accept no introns Accept nucleoid for single, circular DNA Reject nucleosome Reject plasmid Reject (bacterial) chromosome Reject capsule/slime layer Reject flagellum
Question	Marking Guidance	Mark	Comments
03.2	Hydrogen ☑	1 (AO1)	
Question	Marking Guidance	Mark	Comments
03.3	1. Hydrophobic side next to/in/face fatty acids/tails OR Hydrophobic side next to/in/face hydrophobic (part of) phospholipid/bilayer; 2. Hydrophilic sides allow ion movement through membrane OR Hydrophilic sides form a channel;	2 (2 x AO2)	1 and 2 Accept 'part/region/bit/half' for side 2. Accept water OR charged/polar molecules/substances OR water-soluble substances for ions

Question	Marking Guidance	Mark	Comments
03.4	Correct answer for 2 marks, 2.5;; Accept for 1 mark, 2.5434 (Correct answer but 2 or more decimal places) OR 10.2 (correct area calculation using diameter, to 1 decimal place) OR 6.6 (correct calculation using radius (4 – 1.1) ÷ 2, to 1 decimal place) OR 26.4 (correct calculation using diameter, 4 – 1.1, to 1 decimal place)	2 (2 x AO2)	

Question	Marking Guidance	Mark	Comments
03.5	1. Cholesterol stabilises (the membrane) OR Cholesterol restricts the movement of molecules/phospholipids/fatty acid (tails) (making up the membrane); 2. (So) APs do not make channels in (eukaryotic) membranes OR (So) APs cannot enter the (eukaryotic) membrane;		1. Accept makes (membrane) less flexible OR less fluid OR stiffer OR rigid OR gives structural support for stabilises 1. Ignore strength 1. Accept holds together for restricts movement 2. Accept fewer for do not 2. Accept cannot fit OR be positioned OR sit in OR form in OR embed OR disrupt for enter
Question	Marking Guidance		Comments
03.6	 Antibody binds to AP OR Gold (present) where AP located; (As antibody/tertiary structure is) <u>complementary</u> (to AP); Gold interacts with electrons (in TEM); (T)EM (used as it) has a high resolution; 	3 max (3 x AO2)	1. Accept attaches OR forms antibody-AP OR antibody-antigen complex, for binds 2. Reject reference to active site 3. For 'interact' accept scattered/deflected/reflected OR blocked/absorbed/bounced/ interrupted OR a description of these

Question	Marking Guidance			Mark	Comments
04.1	1. Attachment proteins attach to receptors; 2. (Viral) nucleic acid enters cell; 3. Nucleic acid replicated in cell OR Reverse transcriptase makes DNA from RNA; 4. Cell produces (viral) protein/capsid/enzymes; 5. Virus assembled and released (from cell);			3 max (3 x AO1)	1. For 'attachment protein' accept gp41/gp120/ glycoprotein but ignore 'receptor protein' (on virus) 1. Accept bind for attach 2. Accept references to engulfment OR injection for enters Ignore references to virus DNA/RNA incorporated into cell genome/nucleus/ chromosomes 2. and 3. Accept RNA/DNA/genetic material for 'nucleic acid'. 4. Accept capsomeres OR reverse transcriptase for protein 5. Accept lysis OR burst OR bud off OR emerge for released
Question	Marking Guidance	Mark	Comments		
04.2	Feature Replication of linear DNA Replication of circular DNA Produces 2 daughter cells Produces 4 daughter cells Happens in prokaryotic cells Happens in eukaryotic cells	1	Binary fission	2 (2 x AO1)	

Question	Marking Guidance	Mark	Comments
	OR	2 (2 x AO2)	
04.3	OR III		
	OR III II		
	 2 cells on left correct, ignore differences in chromosome length in drawn cells; 2 cells on right correct, ignore differences in chromosome length in drawn cells; 		

Question	Marking Guidance	Mark	Comments
	(Conclusion not valid because)	2	
	1. (MM1) 197/197.1;	(2 x AO3)	
	and		
	2. (MM2) 83/82.8;		
	OR		
04.4	Correct answer for 2 marks,		
	114 – 114.3 (correct difference between MM1 and MM2)		
	Accept for 1 mark,		
	259.2 and 345.6 (using total population size)		
	OR		
	MM2 is 86/86.4 bigger (using population totals)		

Question	Marking Guidance	Mark	Comments
05.1	More than 1 polypeptide;	1 (AO1)	Ignore prosthetic group OR named interactions between chains, eg disulfide bridge
Question	Marking Guidance	Mark	Comments
05.2	1. (Both) active sites have similar/identical tertiary structures OR (Both) active sites have identical amino acid sequences; 2. (So) form enzyme-substrate complexes (with the same substrate);	2 (2 x AO1)	1. Ignore shape for tertiary structure 1. Accept (both) have active sites that are complementary to different parts of the substrate; 1. Accept attach/bind for complementary 2 Accept E-S for enzyme-substrate
Question	Marking Guidance	Mark	Comments
05.3	1. Same volume of (each) buffer/pH solution; 2. Same concentration/mass of substrate (at start); 3. Same concentration/mass of denatured enzyme; If no marks gained, accept for 1 mark, Buffer and substrate and denatured enzyme OR Buffer and substrate and no enzyme OR Buffer and substrate and water;	3 (3 x AO3)	Ignore temperature Ignore amount for volume, concentration OR mass Accept pH solution for buffer 3. Accept description of denatured, eg boiled

Question	Marking Guidance	Mark	Comments
05.4	 Both/P and Q (are) active at pH 8.4; P is (equally/most) active at both pHs OR Q is less active than P at both pHs OR P not affected by pH (change) OR Q is affected by pH (change); Q is denatured/not active at pH 7.5 OR Q is less active than the control at pH 7.5; Reaction occurs without enzyme(s) OR Reaction occurs in the control; All (reactions) reach same end (point) OR Substrate is not used up; 	3 max (3 x AO3)	Do not mark across all three conclusions Accept catalyse OR breakdown (substrate) OR hydrolyse (substrate) OR digest (substrate) OR cause reaction for active/reaction Ignore works better for active/reaction Ignore reference to optimum 3. Accept description of denatured 5. Accept broken down OR catalysed OR digested OR hydrolysed for used (up) 5. Accept does not reach zero for not used up

Question	Marking Guidance	Mark	Comments
06.1	1. (Rate of) transpiration/evaporation increases due to increased temperature OR (Rate of) transpiration/evaporation increases due to increased light intensity OR (Rate of) transpiration/evaporation increases due to decreased humidity OR (Rate of) transpiration/evaporation increases due to increased wind/air movement; 2. (So) increased kinetic energy (causing more water loss) OR (So) increased water potential gradient (so more water lost) OR (So) increased (water) diffusion gradient (so more water lost); 3. Stomata open (at sunrise/after 5 am) allowing gas exchange OR Stomata open (at sunrise/after 5 am) allowing carbon dioxide to enter; 4. (Some) stomata close at midday/after 11 am (reducing transpiration);	4 (4 x AO2)	Ignore reference to tide 1 and 2 Reject tide affecting transpiration/water potential/humidity 1 and 2 Correct link needed between factor affecting transpiration and the explanation 4 Accept at 11 am as the time when stomata close
Question	Marking Guidance	Mark	Comments
06.2	Correct answer for 2 marks, 6.6, 6.67 – 7 (%);; Accept for 1 mark, 0.05 (correct difference in transpiration rate) OR 6.6 (correct calculation, but incorrect rounding) OR 6.25/6.3 (correct calculation using incorrect denominator) OR 666/667 correct number sequence but decimal place in wrong place eg 66.7/0.0667 OR 0.75 as denominator	2 (2 x AO2)	

Question Marking Guidance	Mark	Comments
Mark in groups, either 1 to 4 OR 5 to 8 1. Record mass/length before and after; 2. Place in sea water for (specified/equal) time; 3. Method to remove surface water; 4. Increase in mass/length shows water has been absorbed by osmosis OR Increase in mass/length shows cells have lower water potential; OR 5. Put tissue/cells on (microscope/glass) slide; 6. Add seawater (and leave) 7. Observe under (optical) microscope; 8. If cells become flaccid they do not have a lower water potential than seawater OR (If cells become) turgid cells show water is absorbed by osmosis OR (If cells become) turgid cells show cells have a lower water potential OR (If cells are) not flaccid/plasmolysis cells show water is not lost by osmosis OR (Determine) percentage plasmolysis;	4 (4 x AO3)	Accept 'weight' for 'mass'. Accept 'diameter' for 'length'. 2. Ignore period of time 2. Accept seawater in a dilution series Ignore blot dry before initial mass measurement Reject 'size' once then allow ECF. 3. Accept eg use tissue paper to dry OR blot dry 4. Accept root/mangrove for cells 8. Accept description of turgid (cells)

Question	Marking Guidance	Mark	Comments
	DNA v tRNA	3 max	Apply list rule
	 Deoxyribose v ribose; Double-stranded v single-stranded; 	(3 x AO1)	2. Accept double helix for double stranded
	3. Many nucleotides v few ;4. Thymine v uracil;5. Linear v clover leaf (structure)		3 Accept longer v shorter 4. Ignore T and U
07.1	OR Double helix v clover (leaf structure); 6. Does not bind to amino acid v does bind to		5. Accept description of clover leaf structure.
	amino acid; 7. No exposed bases v <u>anticodon</u> ;		5. Accept straight for linear
			6. Accept attach/carry/have binding site for 'bind to'
Question	Marking Guidance	Mark	Comments
	Use centrifuge/centrifugation at slow/low/increasing (sequence of) speed(s);	2 (1 x	Ignore homogenate OR filtering
	Large/dense organelles (removed) in (first/early) pellet	AO2, 1 x AO3)	Ignore cold, isotonic, buffered
	OR		Accept descriptions of supernatant and
	Less dense organelles (removed) in supernatant OR		pellet, eg liquid and sediment/bottom of tube
07.2	Small organelles (removed) in supernatant;		2. Accept light for small
			Accept ribosomes for small organelles
			Accept more dense OR heavy for large
			2 Accept named large organelle in pellet, eg mitochondria

Question	Marking Guidance	Mark	Comments
07.3	(Tube A) 1. (Ribosomes bound to) rough endoplasmic reticulum; 2. (Are) denser/heavier so move further; (Tube B) 3. (Only free ribosomes because) membrane/phospholipids/endoplasmic reticulum dissolved (by detergent);	3 (3 x AO2)	Award marks across A and B 1. and 3 Do not credit ER/rER the first time used if endoplasmic reticulum not given 2. Accept, free ribosomes are lighter so form a band higher in tube OR do not move as far 2. For 'heavier/lighter' accept 'denser/less dense'. 2. Accept settle lower OR are lower down OR at bottom OR in pellet, for move further 3. Accept broken down for dissolved 3. Ignore damaged for dissolved

Question	Marking Guidance	Mark	Comments
08.1	1. (Red blood cells) do not have a nucleus/DNA; 2. Haemoglobin;	2 (2 x AO3)	1. Accept (To distinguish RBCs from other cells as) fish red blood cells have a nucleus Accept haem OR globin Ignore Hb
Question	Marking Guidance	Mark	Comments
08.2	1 mark for each correct row Volume / µm³ Surface area:volume ratio 0.32:1 8.5 x 10⁴ OR 85 000 If no marks awarded, accept for 1 mark, 0.3217 (correct ratio calculation not given to 2 significant figures) OR Number that can be rounded to 85 000 eg 84615 (correct calculation not given to 2 significant figures)	2 (2 x AO2)	

Question	Marking Guidance	Mark	Comments
08.3	(Difference) 1. More cells (between water and capillary/ blood) OR Wider/thicker filament/lamella; (Explanation) 2. Longer diffusion pathway OR Longer diffusion distance; 3. (So) slower gas exchange OR (So) slower absorption of oxygen OR (So) slower release of carbon dioxide	3 (3 x AO2)	Accept a correct difference and a correct explanation in either section 1. Accept thicker epithelium for more cells 1. Accept gill plate for lamella 3 Ignore efficiency 3. Ignore less
	OR (So) slower rate of diffusion;		

Question	Marking Gu	idance			Mark	Comments
	1 mark for ea	ach correct row			2 max	
	Difference	Circulation of blood in fish	Circulation of blood in mammal;	(2 x AO2)	3 and 4 Accept name of relevant blood vessels eg aorta, pulmonary artery/vein, vena cava	
	1	2 chambers OR 1 ventricle OR 1 atrium OR	4 chambers OR 2 ventricles OR 2 atria OR			
		2 valves	4 valves;			
	2	Blood does not return to heart after being oxygenated OR	Blood returns to heart after being oxygenated OR			
08.4		Blood does not return to heart after passing through gills	Blood returns to heart after passing through lungs			
		OR	OR			
		Heart contains deoxygenated blood	Heart contains oxygenated and deoxygenated blood;			
	3	One vein (carrying blood towards the heart)	Two veins (carrying blood towards heart)			5 Accept descriptions of
	4	One artery (carrying blood away)	Two arteries (carrying blood away)			single circulation and double circulation
	5	Single circulation	Double circulation;			5 Accept 'system' for circulatory system
	6	Blood reaching body capillaries at low(er) pressure	Blood reaching body capillaries at high(er) pressure;			

Question	Marking Guidance	Mark	Comments
	Sucrose actively transported into phloem (cell); OR Sucrose is co-transported/moved with H ⁺ into phloem (cell);	5 max (5 x AO1)	1. Accept sieve (element/tube/cell) for phloem (cell)
	2. (By) companion/transfer cells;		4. Accept description of gradient, eg high <u>er</u> WP
	Lowers water potential (in phloem) and water enters (from xylem) by osmosis;		
09.1	4. ((Produces) high(er) (hydrostatic) pressure; OR (Produces hydrostatic) pressure gradient;		5. Accept transport OR movement for flow
	5. Mass flow to respiring cells		5. Accept buds/young leaves/fruit/seeds/shoot tip/root tip/meristems/root
	OR		mensions/root
	Mass flow to storage tissue/organ; 6. Unloaded/removed (from phloem) by active transport;		6 Accept facilitated diffusion

Question	Marking Guidance	Mark	Comments
09.2	 OR Both are glucose polymers OR Both are made of glucose monomers; 2. Both contain glycosidic bonds (between monomers); 3. Both contain carbon, hydrogen and oxygen/C, H and O; 4. Starch has α-glucose and cellulose has β-glucose; 5. Starch (molecule) is helical/coiled and cellulose (molecule) is straight; 6. Starch (molecule) is branched and cellulose is not/unbranched; 7. Cellulose has (micro/macro) fibrils and starch does not; 	6 max (6 x AO1)	Must include 1, 2 OR 3 to achieve 6 marks All statements must be clearly comparative or linked by the candidate, not inferred from separate statements Additional mark point 8. Starch has 1–6 glycosidic bonds and cellulose does not OR Starch contains two types of molecule and cellulose contains one type of molecule OR Starch is amylose and amylopectin and cellulose is one type of molecule;

Question	Marking Guidance	Mark	Comments
09.3	 Hydrolysis; (Of) glycosidic bonds; (Starch) to maltose by amylase; (Maltose) to glucose by disaccharidase/maltase; Membrane-bound (disaccharidase/maltase); 	4 max (4 x AO1)	Other than 5., do not penalise incorrect site for digestion or incorrect site of enzyme production 5. Accept microvilli for membrane