

GCE

Further Mathematics A

Y533/01: Mechanics

AS Level

Mark Scheme for June 2022

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2022

Text Instructions

1. Annotations and abbreviations

Annotation in RM assessor	Meaning
√and x	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
۸	Omission sign
MR	Misread
BP	Blank Page
Seen	
Highlighting	
Other abbreviations in	Meaning
mark scheme	
dep*	Mark dependent on a previous mark, indicated by *. The * may be omitted if only one previous M mark
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working
AG	Answer given
awrt	Anything which rounds to
BC	By Calculator

2. Subject-specific Marking Instructions for A Level Mathematics A

a Annotations must be used during your marking. For a response awarded zero (or full) marks a single appropriate annotation (cross, tick, M0 or ^) is sufficient, but not required.

For responses that are not awarded either 0 or full marks, you must make it clear how you have arrived at the mark you have awarded and all responses must have enough annotation for a reviewer to decide if the mark awarded is correct without having to mark it independently.

It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

Award NR (No Response)

- if there is nothing written at all in the answer space and no attempt elsewhere in the script
- OR if there is a comment which does not in any way relate to the question (e.g. 'can't do', 'don't know')
- OR if there is a mark (e.g. a dash, a question mark, a picture) which isn't an attempt at the question.

Note: Award 0 marks only for an attempt that earns no credit (including copying out the question).

If a candidate uses the answer space for one question to answer another, for example using the space for 8(b) to answer 8(a), then give benefit of doubt unless it is ambiguous for which part it is intended.

An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not always be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly. Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.

If you are in any doubt whatsoever you should contact your Team Leader.

c The following types of marks are available.

M

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

A method mark may usually be implied by a correct answer unless the question includes the DR statement, the command words "Determine" or "Show that", or some other indication that the method must be given explicitly.

Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

В

Mark for a correct result or statement independent of Method marks.

Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

- When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep*' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. If this is not the case please, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.
 - Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.
- f We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so.
 - When a value is given in the paper only accept an answer correct to at least as many significant figures as the given value.

- When a value **is not given** in the paper accept any answer that agrees with the correct value to **3 s.f.** unless a different level of accuracy has been asked for in the question, or the mark scheme specifies an acceptable range.
 - NB for Specification B (MEI) the rubric is not specific about the level of accuracy required, so this statement reads "2 s.f".

Follow through should be used so that only one mark in any question is lost for each distinct accuracy error.

Candidates using a value of 9.80, 9.81 or 10 for *g* should usually be penalised for any final accuracy marks which do not agree to the value found with 9.8 which is given in the rubric.

- g Rules for replaced work and multiple attempts:
 - If one attempt is clearly indicated as the one to mark, or only one is left uncrossed out, then mark that attempt and ignore the others.
 - If more than one attempt is left not crossed out, then mark the last attempt unless it only repeats part of the first attempt or is substantially less complete.
 - if a candidate crosses out all of their attempts, the assessor should attempt to mark the crossed out answer(s) as above and award marks appropriately.
- For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A or B mark in the question. Marks designated as cao may be awarded as long as there are no other errors. If a candidate corrects the misread in a later part, do not continue to follow through. Note that a miscopy of the candidate's own working is not a misread but an accuracy error.
- If a calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers, provided that there is nothing in the wording of the question specifying that analytical methods are required such as the bold "In this question you must show detailed reasoning", or the command words "Show" or "Determine". Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. If in doubt, consult your Team Leader.
- j If in any case the scheme operates with considerable unfairness consult your Team Leader.

C	Question	Answer	Marks	AO	Gı	idance
1	(a)	$50 \times 2.1 + 70 \times -0.8 = 50 \times 0.35 + 70 \times v_B$	M1	1.1	Conservation of momentum with	Allow one sign error
					correct masses and velocities	Using $\Delta \rho_1 = -\Delta \rho_2$ e.g. $50 \times 2.1 -$
					substituted in	$50 \times 0.35 = 70 \times v_B - 70 \times -0.8$
		$v_B = 0.45$	A1	1.1		
			[2]			
	(b)	$\pm e = (\text{``}0.45\text{''} - 0.35)/(2.10.8) \text{ (oe)}$	M1	1.1	NEL with correct velocities	Allow one sign error
					substituted in	NB "0.45" + 0.35 is M0 unless clearly
						going in opposite directions
		1/29 or awrt 0.0345	A1	1.1		
			[2]			
	(c)	eg initial KE for A = $\frac{1}{2} \times 50 \times 2.1^2$	M1	1.1	Correct calculation of any initial or	110.25, 3.0625, 22.4, 7.0875
					final KE (using their values)	
		so KE loss = $\frac{1}{2} \times 50 \times 2.1^2 + \frac{1}{2} \times 70 \times 0.8^2 - \frac{1}{2} \times \frac{1}{$	M1	1.1	Attempt to find difference between	NB 132.65 – 10.15
		$(\frac{1}{2} \times 50 \times 0.35^2 + \frac{1}{2} \times 70 \times 0.45^2)$ oe			total final KE and total initial KE	If evaluating each object separately,
						then 107.875 + 15.3125 (must be sum)
		122.5 J	A1	1.1	Must be positive	Or 123J
			[3]			
	(d)	Not perfectly elastic since (kinetic) energy is lost	B1	2.4	or since $e < 1$ or $e \ne 1$	Prefer to be specific but accept
						"energy" only
			[1]			

	Question	Answer	Marks	AO	Guidance		
2	(a)	$I = mv - mu = 0.2 \times 24 - 0.2 \times -14$	M1	1.1	Use of $I = \pm \Delta m v$ soi	If $4.8 - 2.8$, then must be clear evidence of sign error in the second velocity, e.g. $\pm (0.2 \times 24 - 0.2 \times 14)$	
		7.6 Ns	A1 [2]	1.1		Magnitude must be > 0	
	(b)	Initial (kinetic) energy = $\frac{1}{2} \times 0.2 \times 24^2$	B1	1.1	Use of $\frac{1}{2}mv^2$ (in an attempt to calculate initial KE of puck)	57.6	
		Final (potential) energy = $0.2g \times 15\sin 10^{\circ}$	M1	1.1	Use of <i>mgh</i> (in an attempt to calculate final PE of puck)	5.105 Allow sin/cos confusion NB count use of g = 9/GPE = 4.688 as a slip	
		Work done against resistance = $R \times 15$	M1	1.1	Use of " $W = Fd$ "		
		$15R + 0.2g \times 15\sin 10^{\circ} = \frac{1}{2} \times 0.2 \times 24^{2}$	M1	3.4	Balancing their energies (3 terms)	All terms must be in correct direction and dimensionally correct	
		awrt 3.50 N	A1	1.1		If N2L used SC2 for 3.50 N www	
			[5]				

Q	uestion	Answer	Marks	AO	Gı	iidance
3		Initial PE = $m \times 9.8 \times 4.2(1 - \cos \pi/3)$	M1	3.1b	Calculation of initial energy. Assuming that the lowest point is	Do not allow use of suvat
					the 0 PE level.	
		Speed is lowest when <i>B</i> reaches the top	B1	2.2a	oe soi e.g. cons of energy seen	If not stated explicitly, then award for any energy equation that leads to $u > 8$
		Energy at top = $\frac{1}{2} \times m \times 4^2 + m \times 9.8 \times (2 \times 4.2)$	M1	1.1	(=90.32m). Adding PE and KE at the top.	
		$m \times 9.8 \times 4.2(1 - \cos \pi/3) + \frac{1}{2}mu^2$ = their energy at top	M1	1.1	$(20.58m + \frac{1}{2}mu^2 = 90.32m)$ Adding PE and KE at start and equating	Consistent dimensions
		$u > 0 \Rightarrow u = \text{awrt } 11.8$	A1	1.1	Must be positive	$u^2 = 139.48$
		Alternative solution Change in PE = $m \times 9.8 \times 4.2 \times (1 + \cos{\frac{\pi}{3}})$ Speed is lowest when <i>B</i> reaches the top	M1 B1		61.74 <i>m</i>	i.e. initial position has zero GPE
		Change in KE = $\pm \frac{1}{2}m(4^2 - u^2)$	M1		May be seen in balanced equation	
		$m \times 9.8 \times 4.2 \times \left(1 + \cos\frac{\pi}{3}\right) = -\frac{1}{2}m(4^2 - u^2)$ oe	M1		Or $\frac{1}{2}mu^2 = \frac{1}{2}m \times 4^2 + m \times 9.8 \times 4.2 \times (1 + \cos\frac{\pi}{2})$	Equating their gain of PE with their loss of KE (signs must be correct)
		u > 0 => u = awrt 11.8	A1		7.0 × 1.2 × (1 + cos ₃)	
			[5]			

C	Question	Answer	Marks	AO	Guidance		
4		F = 250 / v	B1	1.1	Used in the solution in either direction	Do not award if equating D with Fr	
		Up:	M1	1.1	N1L (or balancing forces)	F = 124.689	
		$(\pm)F - 80g \sin 4^{\circ} - 70 = 0$			Opposing forces must be in same	Allow sin/cos confusion	
					direction	Allow 40° instead of 4° confusion	
		v = awrt 2.00	A1	1.1	2.004987	Do not accept negative value unless	
					Accept 2 m/s but not e.g. 2.01	clearly justified e.g. if downwards is	
					NB 2.005 to 4sf	defined as negative	
		Down:	M1	1.1	N1L (or balancing forces)	F = 15.310	
		$F + 80g \sin 4^{\circ} - 70 = 0$					
		v = awrt 16.3	A1	1.1			
			[5]				

	Question		Answer	Marks	AO	Guidance		
5			$a = v^2 / r$ or $r\omega^2$ or $v\omega$	B1	1.2	Use of correct form for centripetal	Do not allow for conical pendulum	
						acceleration (soi); NB $a = 155.55$		
			$70 = 0.45v_{\text{max}}^2 / 3.5 \text{ or } 0.45 \times 3.5\omega_{\text{max}}^2$	M1	3.1b	Use of NII with their a		
						Forces must all be horizontal		
			$70/3 = 2\pi \times 3.5 / T_{\min} \text{ or } 20/3 = 2\pi / T_{\min}$	M1	1.1	Use of correct formula to relate v or ω	From $v_{\text{max}} = 70 / 3$ (or awrt 23.3) or	
						to the period	$\omega_{\rm max} = 20 / 3 \text{ (or awrt 6.67)}$	
			So minimum time is awrt 0.942 s	A1	1.1	$3\pi/10$	SC2 for use of conical pendulum	
							leading to correct answer (SC1 if	
							correct to 2sf (0.94))	
				[4]				

Ç	Question	Answer	Marks	AO	Guidance		
6	(a)	$[v] = LT^{-1}$	B 1	1.2	Used in solution	Penalise wrong basic terms only once	
		$[u^{\alpha}a^{\beta}t^{\gamma}] = L^{\alpha} T^{-\alpha} L^{\beta} T^{-2\beta} T^{\gamma}$	B 1	3.3	Correctly finding the dimensions of	Allow unsimplified	
					$u^{\alpha}a^{\beta}t^{\gamma}$ in terms of α , β and γ		
		$1 = \alpha + \beta \text{ or } -1 = -\alpha - 2\beta + \gamma$	M1	3.4	Equating their dimensions L and T		
		$\Rightarrow \alpha = 1 - \beta$	A1	1.1			
		$\Rightarrow \gamma = \beta$	A1	1.1	www	If extra term such as M is included, then	
						B1B0M1A0A0	
			[5]				
	(b)	For straight line graph t^{γ} must be 1 (or constant or t^0)	M1	3.1b	For clear understanding that the	Or could see e.g.	
		or t (or t^1)			relationship must be of the form $v =$	$v = u^{1-\beta} a^{\beta} t^{\beta}$ with	
					mt + c where both mt and c must	$\beta = 1 \Longrightarrow v = at$ and	
					take the form $[k]u^{\alpha}a^{\beta}t^{\gamma}$	$\beta = 0 \Longrightarrow v = u$	
		(so $\gamma = 0$ or 1) so $\beta = 0$ or 1	A1	1.1		SC1 for $\beta = 1$ using direct proportion or	
						unsupported but www e.g. $\beta = -1$	
			[2]				
	(c)	v must be the sum of terms like $ku^{\alpha}a^{\beta}t^{\gamma}$	M1	2.1	AG. (or $k_1u + k_2at$ or $mt + c$)	Award if at least one term seen, must	
						have k , u , a and t	
		$v = k_1 u + k_2 at$ and $v = u$ when $t = 0 \Rightarrow k_1 = 1$	A1	3.4			
		and $v = u + a$ when $t = 1 => k_1 = 1$ so $v = u + at$	A1	2.2a			
			[3]				

Ç	Question		Answer	Marks	AO	Guidance	
7	(a)		Mom ^m : $1 \times 1.79 + 2.74 \times -0.08 = v_P + 2.74 v_Q$	M1	3.3	Attempt at equating momentum	1.5708
						before and after collision between P	Allow 1 incorrect mass and one sign
						and Q with 4 terms.	slip
			Rest ⁿ : $e = -(v_P - v_Q)/(1.790.08)$	M1	3.3	Attempt at using NEL. Accept	$v_Q - v_P = 1.87e$
						global sign error. Allow sign error in	
						u_Q provided that this is shown	
						clearly	
			4.05	A1	1.1	Both equations correct	
			$v_P = v_Q - 1.87e$ and $v_P = 1.5708 - 2.74v_Q$	M1	1.1	Attempt at solving simultaneously	Or using elimination:
			$\rightarrow v_Q - 1.87e = 1.5708 - 2.74v_Q$			e.g. by substituting for v_P	$1.5708 = v_P + 2.74v_Q$ and
							$1.87e = v_Q - v_P$
			$v_O = (1.5708 + 1.87e)/3.74 = 0.42 + 0.5e$ AG	A1	1.1	AG. Intermediate working must be	$1.5708 + 1.87e = 3.74v_Q$ So $v_Q = 0.42 + 0.5e$
			$V_Q = (1.5708 + 1.876)/3.74 = 0.42 + 0.36$ AG	AI	1.1	shown	$30 V_Q = 0.42 \pm 0.3e$
						Final value must be positive	
				[5]		That value must be positive	
	(b)		$v_P = v_O - 1.87e = 0.42 - 1.37e$	M1	1.1	Deriving v_P from the equations	Or $1.5708 = v_P + 2.74(0.42 + 0.5e)$
	, ,		. 2			and/or answer in (a)	. , ,
			After <i>Q</i> hits wall: $w_0 = \pm e(0.42 + 0.5e)$	M1	3.1b	$(-)e \times \text{their } v_O$	
			No 2^{nd} collision so their $v_P \le v_Q$ soi	B1	2.2a	Condition on velocities given no 2 nd	If using left hand reference then
			_			collision occurs	$v_P \ge v_O$
						Allow strict inequality for this mark	·
			$0.42 - 1.37e \le \pm e(0.42 + 0.5e)$	M1*	3.1b	Condone any inequality or equality	Must be derived from an attempt at v_P
						sign	and w_Q in terms of e
			2				
			$e^2 - 1.9e + 0.84 \le 0$	M1dep*	1.1	Rearranging to 3-term inequality	Must see zero on one side of the
				4450		DC (CV C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	inequality
			Critical values for e; 1.2, 0.7	A1FT	1.1	BC (correct CVs for their inequality,	NB if $w_Q = 0.42e + 0.5e^2$ then expect
						which must be a 3-term quadratic)	to see -3.80 and 0.221
			0.7< .<12 10< .<1 -> 0.7< .<1	A 1	2.2		At least one value must be positive
			$0.7 \le e \le 1.2 \text{ and } 0 \le e \le 1 \Longrightarrow 0.7 \le e \le 1$	A1	2.3	cao Do not allow strict inequality	If derived from equality, then inequality
				[7]		Do not allow strict inequality	must be fully justified.
				[/]			

	Question	Answer	Marks	AO	Guidance		
8	(a)	The velocity of incoming chemical is directed into the pipe or There is no work done on the liquid as it enters the pipe	B1 [1]	3.3	There is no change in KE is insufficient Comments relating to energy changes as the liquid enters the tube	Do not accept trivial statements such as constant velocity Ignore "other resistances" Ignore any comments relating to changes of energy within the tube, or changes in density/compressibility	
	(b)	In one hour, increase in KE = $\frac{1}{2} \times 1500 \times (14.3^2 - 6.2^2)$	B1	3.4	Change in KE soi Could be divided by 3600 (42.6 – 8.00 = 34.59) for 1 second (Or = 83.025 for 1 kg)	153367.5 – 28830 = 124537.5 NB may be seen in part c) Could also see reference to 2.354kg in 5.65s to go through the tube	
		In one hour, increase in PE = $1500 \times 9.8 \times 35 \sin 26^{\circ}$	M1	3.4	Allow cos26° but not 1500g×35 Could be divided by 3600 (= 62.65) (Or 150.36 for 1kg)	225541.955 NB may be seen in part c)	
		Rate at which work is done against resistance in the tube is 40×6.2	B1	1.1	Or work done against resistance = $40 \times (6.2 \times 3600) = 892800J$ Allow 40×35 if divided by 5.65s	Do not allow if the resistance is treated as a driving force or used to find a driving force of 40N.	
		Power at which the pump is working is $\frac{\Delta KE + \Delta PE}{3600} + "40(6.2)"$	M1	3.1b	oe: could have total energy \div 3600 Allow if 40×35 used and added to the total energy	Must be dimensionally correct	
		345 W	A1	1.1	Accept any valid units for power.	Do not allow use of suvat	
		Alternative Method (At the start): PE = 0 and KE = $\frac{1}{2} \times 1500 \times 6.2^2$ and final KE = $\frac{1}{2} \times 1500 \times 14.3^2$	B1		oe, e.g. initial and final KE seen in a balanced equation	Could be expressed per second or for 1kg or for 35m (5.65s)	
		(At the pump end): PE = $1500 \times 9.8 \times 35 \sin 26^{\circ}$ Work done against resistance = $40 \times 6.2 \times 3600$ $\frac{1}{2} \times 1500 \times 6.2^{2} + 3600P + 40 \times 6.2 \times 3600 =$ $1500 \times 9.8 \times 35 \sin 26^{\circ} + \frac{1}{2} \times 1500 \times (14.3^{2})$ oe P = $345W$	M1 B1 M1		Or rate = 40 × 6.2 (= 248)	Must be dimensionally correct	
			[5]				

(a)	(:)	450, 2600 (124527.5) 225541 055	M1	2.4	Correct calculation with their values	Must not include resistance
(c)	(i)	450×3600 – (124537.5 + 225541.955)	M1	3.4		Must not include resistance,
					1620000 – 350079 = 1269921	e.g. 345×3600 accounted for (see
		10701 1 . 2 . 6	A 4		NB 1620000 – 351479 is M0	alternative method)
		= 1270kJ to 3sf	A1	1.1	1269920	A0 for 1268520
		Alternative Method				
		$(450 - 345 + 40 \times 6.2) \times 3600$	M1		Use of excess power output \times 3600	
		= 1270kJ	A1			
			[2]			
	(ii)	eg	B 1	3.5b	An explanation which looks at one of	B0 for considering internal resistance of
		work must be done against other resistance forces			the modelling assumptions and shows	the motor/electrical energy
		(eg at the nozzle) or a blockage (e.g. at the nozzle)			that a higher power output or more	
					energy may be required if it does not	Exclude statements such as:
		or the pump would heat up (or heat up the air			hold.	"energy will not always be constant in
		around it or heat up the chemical or the tube(s))				the system"
		which requires energy, e.g. due to friction between			Ignore anything that refers to internal	"velocity is not always constant"
		the fluid and the pump blades (exclude internal			losses in the pump as the question is	"the model only considers mechanical
		resistance)			about the difference between the	energy, not electrical energy"
		,			power output and the gain in	"the resistance to motion is not
		or the total resistance to motion may be more than			mechanical energy, rather than the	constant"
		40N and so more energy is required			power input.	"there would be more resistance"
					F - · ·	"power output of the motor is not
		The model ignores other resistances to motion			Candidates need to give a valid reason	constant"
					or example not covered by the	"It doesn't consider resistance inside the
		Resistance to motion of the fluid soi, e.g. the liquid			question text rather than non-specific	pump"
		would not all be moving with the same velocity			statements, e.g. not just that there	"the fluid cannot be modelled as a
		(turbulent flow) or may be relatively viscous and			would be more resistance or that there	particle"
		so there would be internal resistance to overcome,			might be other (unstated) resistances.	"energy loss due to inefficiency in the
		which requires energy			inight be office (unstated) resistances.	delivery of power"
		or some energy may be required to change the			At the very least, reference to the 40N	"there will be friction"
		direction of the velocity of the liquid at the intake			mentioned in the question as being	"no liquid escapes the tube"
		and so the pump will need to provide more energy			inadequate is required, or reference to	"no thermal or sound energy escapes"
		to get the intake liquid to a velocity of 6.2ms ⁻¹ up			the fact that all other resistances to	"The flow of liquid is laminar"
		to get the intake inquid to a velocity of 6.2ms - up the tube				References to heat or noise, unless
		the tube			motion have been ignored.	· · · · · · · · · · · · · · · · · · ·
						clearly associated with the movement of
			F43			the fluid
			[1]			

Need to get in touch?

If you ever have any questions about OCR qualifications or services (including administration, logistics and teaching) please feel free to get in touch with our customer support centre.

Call us on

01223 553998

Alternatively, you can email us on

support@ocr.org.uk

For more information visit

ocr.org.uk/qualifications/resource-finder

ocr.org.uk

Twitter/ocrexams

/ocrexams

in /company/ocr

/ocrexams

OCR is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored. © OCR 2022 Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee. Registered in England. Registered office The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA.

Registered company number 3484466. OCR is an exempt charity.

OCR operates academic and vocational qualifications regulated by Ofqual, Qualifications Wales and CCEA as listed in their qualifications registers including A Levels, GCSEs, Cambridge Technicals and Cambridge Nationals.

OCR provides resources to help you deliver our qualifications. These resources do not represent any particular teaching method we expect you to use. We update our resources regularly and aim to make sure content is accurate but please check the OCR website so that you have the most up-to-date version. OCR cannot be held responsible for any errors or omissions in these resources.

Though we make every effort to check our resources, there may be contradictions between published support and the specification, so it is important that you always use information in the latest specification. We indicate any specification changes within the document itself, change the version number and provide a summary of the changes. If you do notice a discrepancy between the specification and a resource, please <u>contact us</u>.

Whether you already offer OCR qualifications, are new to OCR or are thinking about switching, you can request more information using our <u>Expression of Interest form</u>.

Please get in touch if you want to discuss the accessibility of resources we offer to support you in delivering our qualifications.