

GCE

Further Mathematics A

Y545/01: Additional Pure Mathematics

A Level

Mark Scheme for June 2022

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2022

Text Instructions

1. Annotations and abbreviations

Annotation in RM assessor	Meaning
√and x	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
۸	Omission sign
MR	Misread
BP	Blank Page
Seen	
Highlighting	
Other abbreviations in	Meaning
mark scheme	
dep*	Mark dependent on a previous mark, indicated by *. The * may be omitted if only one previous M mark
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working
AG	Answer given
awrt	Anything which rounds to
BC	By Calculator

2. Subject-specific Marking Instructions for A Level Mathematics A

a Annotations must be used during your marking. For a response awarded zero (or full) marks a single appropriate annotation (cross, tick, M0 or ^) is sufficient, but not required.

For responses that are not awarded either 0 or full marks, you must make it clear how you have arrived at the mark you have awarded and all responses must have enough annotation for a reviewer to decide if the mark awarded is correct without having to mark it independently.

It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

Award NR (No Response)

- if there is nothing written at all in the answer space and no attempt elsewhere in the script
- OR if there is a comment which does not in any way relate to the question (e.g. 'can't do', 'don't know')
- OR if there is a mark (e.g. a dash, a question mark, a picture) which isn't an attempt at the question.

Note: Award 0 marks only for an attempt that earns no credit (including copying out the question).

If a candidate uses the answer space for one question to answer another, for example using the space for 8(b) to answer 8(a), then give benefit of doubt unless it is ambiguous for which part it is intended.

An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not always be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly. Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.

If you are in any doubt whatsoever you should contact your Team Leader.

c The following types of marks are available.

M

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

A method mark may usually be implied by a correct answer unless the question includes the DR statement, the command words "Determine" or "Show that", or some other indication that the method must be given explicitly.

Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

В

Mark for a correct result or statement independent of Method marks.

Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

- When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep*' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. If this is not the case please, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.
 - Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

- f We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so.
 - When a value is given in the paper only accept an answer correct to at least as many significant figures as the given value.
 - When a value **is not given** in the paper accept any answer that agrees with the correct value to **3 s.f.** unless a different level of accuracy has been asked for in the question, or the mark scheme specifies an acceptable range.

NB for Specification B (MEI) the rubric is not specific about the level of accuracy required, so this statement reads "2 s.f".

Follow through should be used so that only one mark in any question is lost for each distinct accuracy error.

Candidates using a value of 9.80, 9.81 or 10 for *g* should usually be penalised for any final accuracy marks which do not agree to the value found with 9.8 which is given in the rubric.

- g Rules for replaced work and multiple attempts:
 - If one attempt is clearly indicated as the one to mark, or only one is left uncrossed out, then mark that attempt and ignore the others.
 - If more than one attempt is left not crossed out, then mark the last attempt unless it only repeats part of the first attempt or is substantially less complete.
 - if a candidate crosses out all of their attempts, the assessor should attempt to mark the crossed out answer(s) as above and award marks appropriately.
- For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A or B mark in the question. Marks designated as cao may be awarded as long as there are no other errors. If a candidate corrects the misread in a later part, do not continue to follow through. Note that a miscopy of the candidate's own working is not a misread but an accuracy error.
- If a calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers, provided that there is nothing in the wording of the question specifying that analytical methods are required such as the bold "In this question you must show detailed reasoning", or the command words "Show" or "Determine". Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. If in doubt, consult your Team Leader.
- j If in any case the scheme operates with considerable unfairness consult your Team Leader.

Q	uesti	ion	Answer	Marks	AO	Guidance
1	a		$\frac{\partial z}{\partial x} = \frac{1}{2} z^{-1}6x \qquad \qquad \frac{\partial z}{\partial y} = \frac{1}{2} z^{-1}4y$	M1	1.1	Attempt at partial differentiation (at least one case) $ax \times z^{-1}$ or $by \times z^{-1}$ At least one correct (any form) Substituting values into <i>their</i> partial derivatives to get
			$\frac{\partial z}{\partial x} = -\frac{3x}{z} = -11$ and $\frac{\partial z}{\partial y} = -\frac{2y}{z} = \frac{16}{3}$	M1 A1	1.1 1.1	numerical "gradients" (can be implied by a correct answer) Both correct
			Alternative method $2z \frac{\partial z}{\partial x} = -6x \qquad 2z \frac{\partial z}{\partial y} = -4y$	M1 A1		Squaring and use of implicit differentiation (at least one case) At least one correct (any form)
			$\frac{\partial z}{\partial x} = -\frac{3x}{z} = -11$ and $\frac{\partial z}{\partial y} = -\frac{2y}{z} = \frac{16}{3}$	M1 A1		Substituting values to get numerical "gradients" Both correct
				[4]		
	b		$z - 3 = -11(x - 11) + \frac{16}{3}(y + 8)$	M1	1.1	Eqn. for tangent plane used Must have numerical "gradients" involved
			$\Rightarrow 33x - 16y + 3z = 500$	A1 [2]	1.1	CAO (any non-zero integer multiple)
2	a		If $h \mid 7n + 4$ and $h \mid 8n + 5$ then $h \mid 7(8n + 5) - 8(7n + 4)$	M1	2.1	A linear combination of the two numbers attempted
			i.e. $h \mid 3$	A1	1.1	Correct from choice of 7, –8 (or –7, 8)
			$\Rightarrow h = 1 \text{ or } 3$	B1	2.2a	inclusion of either/both of $h = -1, -3 \rightarrow \mathbf{B0}$
			Alternative method hcf(7 <i>n</i> +4, 8 <i>n</i> +5)=hcf(7 <i>n</i> +4, <i>n</i> +1)=hcf(7(<i>n</i> +1)-(7 <i>n</i> +4), <i>n</i> +1) hcf(3, <i>n</i> +1) <i>h</i> = 1 or 3	M1 A1 B1 [3]		

Q	uesti	on	Answer	Marks	AO	Guidance
	b		$7n + 4 \equiv 0 \pmod{3}$	M1	3.1a	Solving attempt at this, or $8n + 5 \equiv 0 \pmod{3}$, or both (if a list is given, at least $n = 2, 5, 8$ seen and no errors)
			$\Rightarrow n \equiv 2 \pmod{3}$	A1	1.1	Condone $n \equiv -1 \pmod{3}$ instead
				[2]		
3			$\phi^1 = 1.\phi + 0 = (F_1)\phi + (F_0)$ so result true for $n = 1$	B1	2.5	
			Assuming that $\phi^k = (F_k)\phi + (F_{k-1})$	M1	1.2	Induction hypothesis explicitly stated (so "assume the result is true for $n = k$ " does not suffice without a clear indication as to what it is that is being assumed)
			it follows that $\phi^{k+1} = \phi((F_k)\phi + (F_{k-1}))$	M1	1.1a	Attempt at ϕ^{k+1} with explicit use of induction hypothesis
			$= (F_k)(\phi+1)+(F_{k-1})\phi$	M1	3.1a	Use of result for $n = 2$ or from known property of ϕ (e.g. from the auxiliary equation of the Fib. sequence) or by direct calculation
			$(F_k + F_{k-1})\phi + (F_k) = (F_{k+1})\phi + F_k$ and result is also true for $n = k + 1$	A1*	2.2a	$(k+1)^{\text{th}}$ case established clearly from use of the defining Fibonacci sequence property
			Since true for $n = 1$ and (true for $n = k \Rightarrow$ true for $n = k + 1$), the result follows for all $n \ge 1$ by induction	A1dep	2.4	Explanation of the inductive logic (can only be awarded if the result has actually been proven).
				[6]		

Qu	esti	on	Answer	Marks	AO	Guidance
4	a	i	"odds – evens" = $(1 + 8 + 4 + 7) - (5 + 2 + 5 + 8) = 0$ Since result is a multiple of 11, so is N	M1 A1	1.1 2.4	Shown (or via $1-5+8-2+4-5+7-8=0$) Explanation (not just "since answer = 0")
			Since result is a manaple of 11, so is iv	[2]	2.4	
		ii	If $7 \mid N$ and $7 \mid 70$ (e.g.) then $7 \mid N - 70$ etc.	B1	2.3	or equivalent including in words only, e.g. "a sum of multiples of 7 is a multiple of 7"
			$N = 15 824 578$ $N_1 = 15 824 508$ $N_2 = 01 824 508$ $N_3 = 01 124 501$ $N_4 = 01 103 0 11$ $N_5 = 00 400 204$ $N_6 = 00 050 064$ $N_7 = 00 000 1001$ $N_8 = 00 000 301$ $N_9 = 00 000 000$ (may note here that $1001 = 7 \times 11 \times 13$) $N_9 = 00 000 000$	B1	1.1	Convincingly showing that the process ultimately yields a zero. Leading zeros not required, no specific notation required. Condone stopping at $N_r < 500$, provided $N_r \equiv 0 \pmod{7}$ shown A minimalist approach might go from $N_2 = \underline{18} \ \underline{24} \ \underline{50} \ \underline{8} $ to (say) $N_3 = 04 \ 03 \ 01 \ 1 $ etc. (i.e. several steps at once)
		iii	Since 7 11×1 438 598 and hcf(7, 11) = 1 then 7 1 438 598	B1	1.2	i.e. by Euclid's lemma
				[1]		
	b	i	$\frac{N}{101} = 156 \ 678 \frac{100}{101}$	M1	1.1	Division attempt (may be implied by correct answers)
			a = 156 678 and $b = 100$	A1 [2]	1.1	
		ii	$M = N^2 \equiv (-1)^2 \equiv 1 \pmod{101}$	B1	1.1	Must use their result in (b)(i)
				[1]		
		iii	The order of N mod 101 is 2	B1	2.2a	
				[1]		

Q	Question		Answer	Marks	AO	Guidance
5	a		$\overrightarrow{OA} \times \overrightarrow{OB} = 0$ requires $OA // OB$	M1	2.1	Clear use of this result (parallellism)
			and $(3 -8 \dots)$ can never be a multiple of $(1 \ 2 \dots)$	A1	2.4	Properly explained
				[2]		
	b		$(3\mathbf{i} - 8\mathbf{j} + t\mathbf{k}) \times (\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}) = (16 - 2t)\mathbf{i} + (6 + t)\mathbf{j} + 14\mathbf{k}$	M1	1.1	Either of the i - or j - components correct
	D	1	$(3i - 6j + tk) \times (i + 2j - 2k) = (10 - 2t)i + (0 + t)j + 14k$	A1	1.1	All correct
			Area $\triangle OAB = \frac{1}{2}$ their Vector Product	M1	1.1	Attempted (must have t's involved)
			$= \frac{1}{2}\sqrt{5t^2 - 52t + 488}$	A1	1.1	$\frac{1}{2}\sqrt{(16-2t)^2+(6+t)^2+14^2}$ is fine here
				[4]		
		ii	Differentiating their answer, or by completing the square	M1	3.1a	Leading to a linear equation of the form $at + b = 0$ with non-zero a and b
			t = 5.2	A1	1.1	
				[2]		

Qı	uesti	on	Answer	Marks	AO	Guidance
6	a		$A_{n+1} = 0.96A_n + 40$ and $A_0 = 1000$	B1	3.3	or $A_n = 0.96A_{n-1} + 40$ and $A_0 = 1000$
				[1]		
			80, i.e. 8% of adults lost linked to the 0.92			
	b	i	(noting that the 1000 and 40 remain the same as before)	B 1	2.1	AG
			$A_{n+1} = 0.92A_n + 40$ and $A_0 = 1000$			
				[1]		
		ii	PS from $A_{n+1} = A_n = a$ is $A_n = 500$	B1	1.1	
			CS is $A_n = C \times 0.92^n$	B1	1.1	
			Soln. from GS: $A_n = C \times 0.92^n + 500$ with $A_0 = 1000$	M1	1.1	
			$A_n = 500 \times 0.92^n + 500$	A1	1.1	
				[4]		
		iii	A_n decreases, stabilising at a constant 500	D1	3.4	Not required to say "monotonic decreasing", since
		111	i.e. $A_n \rightarrow 500$	B1	3.4	only <i>long-term</i> behaviour asked-for
				[1]		

Quest	tion	Answer	Marks	AO	Guidance
c	i	PS is $A_n = 250$	B1	1.1	May be implied by following answer
		General solution is of the form $A_n = D \times \alpha^n + E \times \beta^n + 250$ " where α and β are positive and less than 1	M1	3.1a	Accept statement that α and β are both positive and less than 1
		Hence both α^n and $\beta^n \to 0$	A1	2.4	If calculated, α and β must be correct
					Note that $\alpha = \frac{1}{2}(0.9 + \sqrt{0.41}) = 0.77$ and
		$A_n \rightarrow \text{`250'}$	A1 [4]	1.1	$\beta = \frac{1}{2}(0.9 - \sqrt{0.41}) = 0.13$ $(D = 375 + \frac{665}{2\sqrt{0.41}} \approx 894.27776 \text{ and } E = 375 - \frac{665}{2\sqrt{0.41}} \approx -144.27776)$ FT from PS $\mathbf{SC1} \ X = 0.9X - 0.1X + 50, \text{ so } X = 250$ $\mathbf{B1M1A0A1} \text{ is possible}$
	ii	$A_{n+1} = INT(0.9A_n - 0.1A_{n-1} + 50)$	B1	3.5c	(Note that this gives $A_n \rightarrow 249$)
			[1]		

Q	uesti	ion	Answer	Marks	AO	Guidance
7	a		$3t\sqrt{16+t^2}$	B1	1.1	
				[1]		
	b		$I_n = \int t^{n-1} \cdot t \sqrt{16 + t^2} dt =$ $a t^{n-1} (16 + t^2)^{3/2} - b \int (n-1)t^{n-2} (16 + t^2)^{3/2} dt$	M1	3.1a	Use of integration by parts, with appropriate splitting, so that (a)'s result can be used
			a=b=1/3	A1	1.1	1 st stage all correct
			$3I_n = t^{n-1} (16+t^2)^{3/2} - (n-1) \int t^{n-2} \cdot (16+t^2) \sqrt{16+t^2} dt$	M1*	3.1a	Splitting $(16 + t^2)^{3/2}$ in the integral appropriately
			$= t^{n-1} (16 + t^2)^{3/2} - (n-1) (16I_{n-2} + I_n)$	M1dep	2.1	Integral(s) correctly expressed in terms of <i>I</i> 's
			$\Rightarrow (n+2) I_n = (125 \times 3^{n-1}) - 16(n-1) I_{n-2}$	A1	2.2a	AG cao (showing correct substitution of limits at some point)
			•	[5]		
	С		$\dot{x} = \pm t^4 \sin t + 4t^3 \cos t \text{ or } \dot{y} = \pm t^4 \cos t + 4t^3 \sin t$	M1*	1.1	Attempt at differentiation using the <i>Product rule</i>
				A1	1.1	
			$L = \int \sqrt{t^8 + 16t^6} \mathrm{d}t$	M1dep	1.1	Use of arc-length formula with their $\left(x\right)^2 + \left(y\right)^2$
			$= \int_{0}^{3} t^{3} \sqrt{t^{2} + 16} dt = I_{3}$	A1	1.1	AG www, including limits (note that $I_3 = 94\frac{13}{15}$)
				[4]		

Q	uesti	ion	Answer	Marks	AO	Guidance
8	a		Inverses pair up (even number) and there is one identity element	M1	2.1	Parity argument involving inverse pairs
			Since total is even, there must be an odd number of self-inverse elements	A1	2.2a	
				[2]		
	b		Consider xy and its inverse, also xy . Now $xy = (xy)^{-1}$	M1	3.1a	Must be stated or derived
			$= y^{-1}x^{-1} = yx \iff abelian$	A1	1.1	NB No need to include statements about the identity
				[2]		
	С		By considering the product of any two of elements a , b , c	M1	2.1	It must be noted that these elements are self-inverse (or of order 2)
			gives one of d , e of order 3	A1	2.2a	Correct example from the Cayley table must be given and the contradiction concluded
				[2]		
	d		Assume that all (non-identity) elements of <i>G</i> are self-inverse/have order 2	B1	2.1	
			Then H is a group (\cong the Klein group of order 4) and hence a subgroup of G	B1*	2.2a	Longer proofs that H is a group may involve $xy = yx$ (by part b) so that H is closed, etc.
			(Lagrange's theorem states that) $o(H) \mid o(G)$	M1	2.4	Consideration of Lagrange's theorem
			But $4 \nmid (4n + 2)$ giving the required $\Rightarrow \Leftarrow$	A1dep	1.1	
				[4]		

Q	uesti	on	Answer	Marks	AO	Guidance
9	a		$\frac{\partial z}{\partial x} = 8x + 4y + 6$ and $\frac{\partial z}{\partial y} = 4x + 2y + 3$	M1	1.1	Both first partial derivatives attempted
	a		$\frac{\partial x}{\partial x} = \frac{\partial x}{\partial y} + \frac{\partial y}{\partial y} = \frac{\partial x}{\partial y} + \frac{\partial y}{\partial y} = \frac{\partial y}{\partial y} + \frac{\partial y}{\partial y} + \frac{\partial y}{\partial y} = \frac{\partial y}{\partial y} + \frac{\partial y}{\partial y} + \frac{\partial y}{\partial y} + \frac{\partial y}{\partial y} = \frac{\partial y}{\partial y} + $	A1	1.1	Both correct
				[2]		
	b		Considering z as a function of $2x + y$	M1	3.1a	
			$z = (2x + y)^2 + a(2x + y) + b$	M1	3.2a	a and b non-zero constants
			a=3 and $b=k$	A1	2.1	
			For S always lying above the x-y plane $z > 0$	B1		
			$t = 2x + y$ so $z = t^2 + 3t + k$ (> 0) soi	D1	1.1	
						Or completing the square $\left(t + \frac{3}{2}\right)^2 + c$ (This implies
			Discriminant of $t^2 + 3t + k < 0$	M1	3.1a	the first two M1) and stating $c > 0$
						If completing the square, $\left(t + \frac{3}{2}\right)^2 - \frac{9}{4} + k$
			Discriminant=9-4k	A1	1.1	This implies the first A1
						This implies the first III
			$k > \frac{9}{4}$ so least integer k is 3	B1	2.4	
			4			SC1 <i>k</i> =3 with no evidence
			Alternative method			
			8x + 4y + 6 = 0 and/or $4x + 2y + 3 = 0$	M1		
			$x = -\frac{3}{4} - \frac{1}{2}y$ or $y = -2x - \frac{3}{2}$	M1		
			Substituting either into z	M1		

Q	Question		Answer	Marks	AO	Guidance
			Correct substitution	A1		
			$-\frac{9}{4}+k$	A1		seen
			For <i>S</i> always lying above the <i>x</i> - <i>y</i> plane $z > 0$	B1		Must justify that a minimum value of z occurs when $4x + 2y + 3 = 0$ (eg through a sketch)
			$\Rightarrow k > \frac{9}{4}$ so least integer k is 3	B1		
				[7]		

Need to get in touch?

If you ever have any questions about OCR qualifications or services (including administration, logistics and teaching) please feel free to get in touch with our customer support centre.

Call us on

01223 553998

Alternatively, you can email us on

support@ocr.org.uk

For more information visit

ocr.org.uk/qualifications/resource-finder

ocr.org.uk

Twitter/ocrexams

/ocrexams

in /company/ocr

/ocrexams

OCR is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored. © OCR 2022 Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee. Registered in England. Registered office The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA.

Registered company number 3484466. OCR is an exempt charity.

OCR operates academic and vocational qualifications regulated by Ofqual, Qualifications Wales and CCEA as listed in their qualifications registers including A Levels, GCSEs, Cambridge Technicals and Cambridge Nationals.

OCR provides resources to help you deliver our qualifications. These resources do not represent any particular teaching method we expect you to use. We update our resources regularly and aim to make sure content is accurate but please check the OCR website so that you have the most up-to-date version. OCR cannot be held responsible for any errors or omissions in these resources.

Though we make every effort to check our resources, there may be contradictions between published support and the specification, so it is important that you always use information in the latest specification. We indicate any specification changes within the document itself, change the version number and provide a summary of the changes. If you do notice a discrepancy between the specification and a resource, please <u>contact us</u>.

Whether you already offer OCR qualifications, are new to OCR or are thinking about switching, you can request more information using our <u>Expression of Interest form</u>.

Please get in touch if you want to discuss the accessibility of resources we offer to support you in delivering our qualifications.