

Please write clearly in	ı block capitals.	
Centre number	Candidate number	
Surname		-
Forename(s)		-
Candidate signature	I declare this is my own work.	_/

A-level **MATHEMATICS**

Paper 1

Wednesday 3 June 2020

Afternoon

Time allowed: 2 hours

Materials

- You must have the AQA Formulae for A-level Mathematics booklet.
- You should have a graphical or scientific calculator that meets the requirements of the specification.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question. If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 100.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

For Examiner's Use			
Question	Mark		
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
TOTAL			

Answer all questions in the spaces provided.

The first three terms, in ascending powers of x, of the binomial expansion of 1 $(9+2x)^{\frac{1}{2}}$ are given by

$$(9+2x)^{\frac{1}{2}} \approx a + \frac{x}{3} - \frac{x^2}{54}$$

where a is a constant.

1 (a) State the range of values of x for which this expansion is valid.

Circle your answer.

[1 mark]

$$|x| < \frac{2}{9}$$
 $|x| < \frac{2}{3}$ $|x| < 1$ $|x| < \frac{9}{2}$

$$|x|<\frac{2}{3}$$

$$|x| < \frac{9}{2}$$

1 (b) Find the value of *a*.

Circle your answer.

[1 mark]

1

2

3

9

2 A student is searching for a solution to the equation f(x) = 0

He correctly evaluates

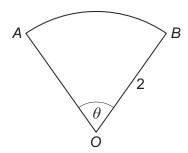
$$f(-1) = -1$$
 and $f(1) = 1$

and concludes that there must be a root between -1 and 1 due to the change of sign.

Select the function f(x) for which the conclusion is **incorrect**.

Circle your answer.

[1 mark]


$$f(x) = \frac{1}{x}$$

$$f(x) = x$$

$$f(x) = x^3$$

$$f(x) = \frac{1}{x}$$
 $f(x) = x$ $f(x) = x^3$ $f(x) = \frac{2x+1}{x+2}$

3 The diagram shows a sector OAB of a circle with centre O and radius 2

The angle AOB is θ radians and the perimeter of the sector is 6

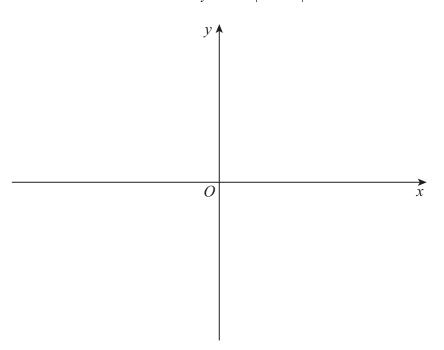
Find the value of θ

Circle your answer.

[1 mark]

1

 $\sqrt{3}$


2

3

Turn over for the next question

4 (a) Sketch the graph of

$$y = 4 - |2x - 6|$$

[3 marks]

4 (b) Solve the inequality

$$4 - |2x - 6| > 2$$

[2 marks]

ı	Do	not	writ
	ou	tside	e the
		40	

5	Prove that, for integer values of n such that $0 \le n < 4$		
	$2^{n+2} > 3^n$		
		[2 marks]	
		·	
	Turn over for the next question		
	rain over for the next question		

Turn over ▶

6	Four students, Tom, Josh, Floella and Georgia are attempting to complete the
	indefinite integral

$$\int \frac{1}{x} \, \mathrm{d}x \qquad \text{for } x > 0$$

Each of the students' solutions is shown below:

Tom
$$\int \frac{1}{x} \, \mathrm{d}x = \ln x$$

$$\int \frac{1}{x} \, \mathrm{d}x = k \ln x$$

Floella
$$\int \frac{1}{x} \, \mathrm{d}x = \ln Ax$$

Georgia
$$\int \frac{1}{x} \, \mathrm{d}x = \ln x + c$$

6	(a)	(ii)	Explain	what is	s wrona	with	Josh's	answer.
U	lαi	("')	LAPIGIT	wildt	3 WIDING	VVILII	003113	answer.

6 (b)	Explain why Floella and Georgia's answers are equivalent.
-------	---

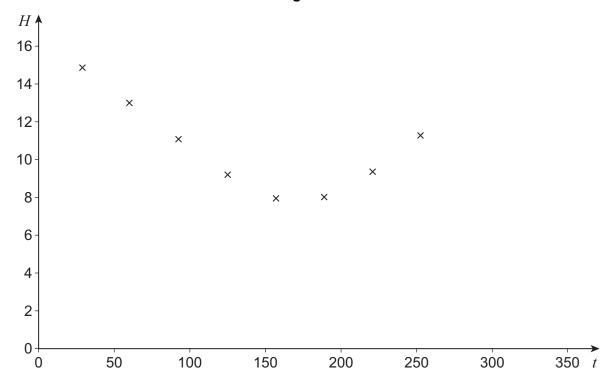
[2 marks]

[1 mark]

[1 mark]

Do	not	write
ou	tside	the
	ho	v

7	Consecutive terms of a sequence are related by	
	$u_{n+1} = 3 - (u_n)^2$	
7 (a)	In the case that $u_1 = 2$	
7 (a) (i)	Find u_3	[2 marks]
		[2 marko]
- () (:)		
7 (a) (ii)	Find u ₅₀	[1 mark]
7 (b)	State a different value for u_1 which gives the same value for u_{50} as found in part (a)(ii).	
		[1 mark]
	Turn over for the next question	
	_	



8 Mike, an amateur astronomer who lives in the South of England, wants to know how the number of hours of darkness changes through the year.

On various days between February and September he records the length of time, H hours, of darkness along with t, the number of days after 1 January.

His results are shown in Figure 1 below.

Figure 1

Mike models this data using the equation

$$H = 3.87 \sin\left(\frac{2\pi(t+101.75)}{365}\right) + 11.7$$

8 (a)	Find the minimum number of hours of darkness predicted by Mike's model.	Give your
	answer to the nearest minute.	

I	Dο	not	writ
	out	side	e the
		bo	X

8 (b)	Find the maximum number of consecutive days where the number of hours of darkness predicted by Mike's model exceeds 14		
		[3 marks]	
	Question 8 continues on the next page		

8 (c) Mike's friend Sofia, who lives in Spain, also records the number of hours of darkness on various days throughout the year. Her results are shown in Figure 2 below. Figure 2 H16 × 141 × × × 12 × × 10 8 6 4 2 0 -0 50 100 150 200 250 300 350 t Sofia attempts to model her data by refining Mike's model. She decides to increase the 3.87 value, leaving everything else unchanged. Explain whether Sofia's refinement is appropriate. [2 marks]

Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Turn over ▶

9 Chloe is attempting to write $\frac{2x^2 + x}{(x+1)(x+2)^2}$ as partial fractions, with constant numerators.

Her incorrect attempt is shown below.

Step 1
$$\frac{2x^2 + x}{(x+1)(x+2)^2} \equiv \frac{A}{x+1} + \frac{B}{(x+2)^2}$$

Step 2
$$2x^2 + x \equiv A(x+2)^2 + B(x+1)$$

Step 3 Let
$$x = -1 \Rightarrow A = 1$$

Let $x = -2 \Rightarrow B = -6$

Answer
$$\frac{2x^2 + x}{(x+1)(x+2)^2} \equiv \frac{1}{x+1} - \frac{6}{(x+2)^2}$$

9 (a) (i) By using a counter example, show that the answer obtained by Chloe cannot be correct.

·	·	

9 (a) (ii) Explain her mistake in Step 1.

[1 mark]

[2 marks]

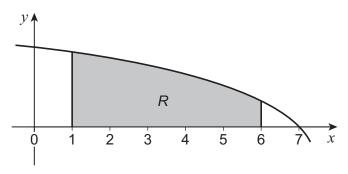
[4 marks]	Write $\frac{2x^2 + x}{(x+1)(x+2)^2}$ as partial fractions, with constant numerator	ors.
		[4 marks]

Turn over ▶

10 (a)	An arithmetic series is given by	
10 (a) (i)	$\sum_{r=5}^{20} \left(4r+1\right)$ Write down the first term of the series.	1 mark]
10 (a) (ii)	Write down the common difference of the series.	1 mark]
10 (a) (iii)	Find the number of terms of the series.	
		1 mark]

			Do n
10 (b)	A different arithmetic series is given by		Do n outs
	$\sum_{r=10}^{100} (br + c)$		
	where b and c are constants.		
	The sum of this series is 7735		
10 (b) (i)	Show that $55b + c = 85$	[4 marks]	

b) (ii) The 40th term of the series is 4 times the 2nd	I term.
Find the values of b and c .	[4 marks]



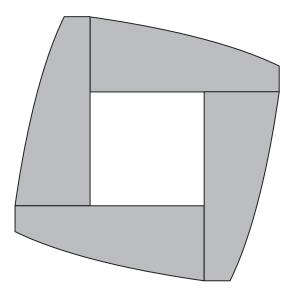
The region R enclosed by the lines x = 1, x = 6, y = 0 and the curve

$$y = \ln(8 - x)$$

is shown shaded in Figure 3 below.

Figure 3

All distances are measured in centimetres.


11 (a) Use a single trapezium to find an approximate value of the area of the shaded region, giving your answer in cm² to two decimal places.

[2 marks

Question 11 continues on the next page

11 (b) Shape B is made from four copies of region R as shown in Figure 4 below.

Figure 4

Shape B is cut from metal of thickness 2 mm

The metal has a density of $10.5\,\mathrm{g/cm^3}$

Use the trapezium rule with \mathbf{six} ordinates to calculate an approximate value of the mass of Shape B.

 [5 marks

	·

		Do not write outside the box
11 (c)	Without further calculation, give one reason why the mass found in part (b) may be:	
11 (c) (i)	an underestimate. [1 mark]	
11 (c) (ii)	an overestimate. [1 mark]	
	Turn over for the next question	

12	A curve C has equation
	$x^3\sin y + \cos y = Ax$
	where A is a constant.
	C passes through the point $P(\sqrt{3}, \frac{\pi}{6})$
12 (a)	Show that $A=2$ [2 marks]
12 (b) (i)	Show that $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2 - 3x^2 \sin y}{x^3 \cos y - \sin y}$ [5 marks]

12 (b) (ii)	Hence, find the gradient of the curve at <i>P</i> .	ulra1
	[2 ma	rksj
12 (b) (iii)	The tangent to C at P intersects the x-axis at Q.	
	Find the exact <i>x</i> -coordinate of <i>Q</i> .	
	[4 ma	rks]

Do not	ν	vrit	έ
outside	е	the	Э
bo	x		

13	The function \boldsymbol{f} is	defined by		
		$f(x) = \frac{2x+3}{x-2}$	$x \in \mathbb{R}, x \neq 2$	
13 (a) (i)	Find f^{-1}			[3 marks]
13 (a) (ii)	Write down an ex	pression for $ff(x)$.		[1 mark]

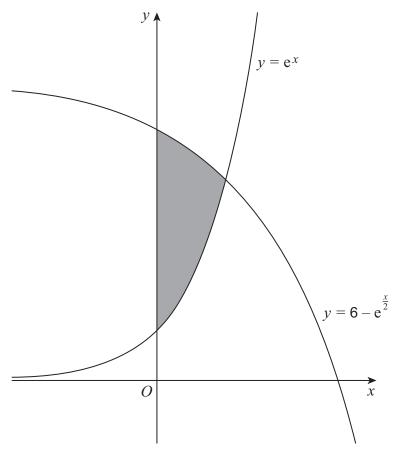
narks]
narks]
narks]
ııaı kəj
narks]

13 (c)	Show that		Do not write outside the box
		$=\frac{48+29x-2x^2}{2x^2-8x+8}$	[4 marks]
	,		- <u>-</u>
	,		

Do	not	write
ou	tside	e the
	4-	

13 (d)	It can be shown that fg is given by	
	$fg(x) = \frac{4x^2 - 10x + 6}{2x^2 - 5x - 4}$	
	with domain $\{x \in \mathbb{R} : 0 \le x \le 4, x \ne a\}$	
	Find the value of a .	
	Fully justify your answer.	[2 marks]

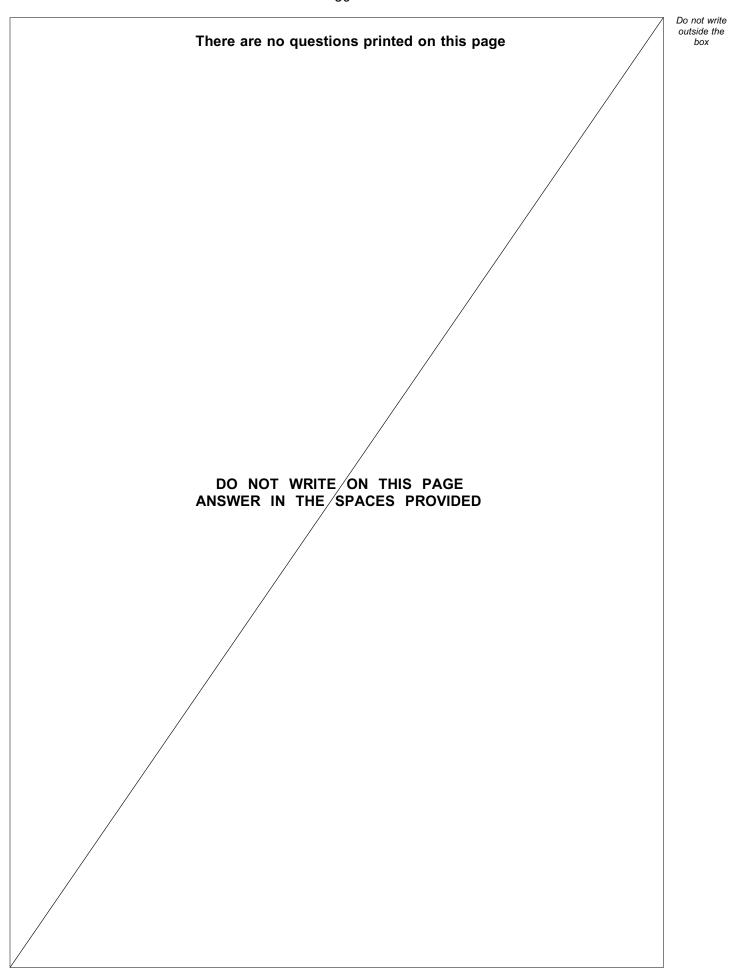
Turn over for the next question


14	The function f is defined by	
	$f(x) = 3^x \sqrt{x} - 1 \qquad \text{where } x \ge 0$	
14 (a)	$f(x) = 0$ has a single solution at the point $x = \alpha$	
	By considering a suitable change of sign, show that α lies between 0 and 1 $$	[2 marks]
14 (b) (i)	Show that	
, , , ,	$f'(x) = \frac{3^x(1+x\ln 9)}{2\sqrt{x}}$	
		[3 marks]

14 (b) (ii)	Use the Newton–Raphson method with $x_1 = 1$ to find x_3 , an approximation	for α .
	Give your answer to five decimal places.	[2 marks]
14 (b) (iii)	Explain why the Newton–Raphson method fails to find α with $x_1=0$	
		[2 marks]

The region enclosed between the curves $y = e^x$, $y = 6 - e^{\frac{x}{2}}$ and the line x = 0 is shown shaded in the diagram below.

Show that the exact area of the shaded region is


 $6 \ln 4 - 5$

Fully justify your answer.	[10 marks]
	·

-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
_	
-	
-	
	END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.	
	Copyright information	
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.	
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.	
	Copyright © 2020 AQA and its licensors. All rights reserved.	

