

Please write clearly in	n block capitals.	
Centre number	Candidate number	
Surname		_
Forename(s)		_
Candidate signature	I declare this is my own work.	- ノ

AS CHEMISTRY

Paper 1 Inorganic and Physical Chemistry

Monday 18 May 2020

Morning

Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- the Periodic Table/Data Sheet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do **not** write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
Section B		
TOTAL		

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

You are advised to spend about 65 minutes on Section A and 25 minutes on Section B.

	Section A
	Answer all questions in this section.
0 1	This question is about atomic structure.
0 1.1	There is a general trend for an increase in ionisation energy across Period 3. Give one example of an element that deviates from this trend.
	Explain why this deviation occurs. [3 marks]
	Element
	Explanation
0 1.2	Give an equation, including state symbols, to represent the process that occurs when the third ionisation energy of sodium is measured. [1 mark]

outside the 0 1 . 3 Figure 1 shows the successive ionisation energies of a Period 3 element, X. Figure 1 45 000 40 000 35 000 30 000 Ionisation 25 000 energy / kJ mol-1 20 000 15 000 10 000 5 000 3 5 10 Ionisation number Identify element X. Explain your choice. [3 marks] Element Explanation 7

Turn over for the next question

Turn over ▶

Do not write

0 2

This question is about a titration.

A student dissolves an unknown mass of sodium hydroxide in water to make 200 cm³ of an aqueous solution.

A 25.0 cm 3 sample of this sodium hydroxide solution is placed in a conical flask and is titrated with 0.150 mol dm $^{-3}$ sulfuric acid.

The equation for this reaction is shown.

$$2$$
NaOH(aq) + H₂SO₄(aq) \rightarrow Na₂SO₄(aq) + 2 H₂O(I)

Table 1 shows the results of the titrations.

Table 1

Titration	Rough	1	2	3
Final reading / cm ³	20.75	40.35	21.05	40.60
Initial reading / cm ³	0.00	20.75	1.20	21.05
Titre / cm³	20.75	19.60	19.85	19.55

0	2	. 1	Calculate the mass of sodium hydroxide used to make the original solution.	
		J		[5 marks]

Mass of sodium hy	vdroxide	a
maco or obtaining	al Oxido	۶

0 2 . 2	The student uses a funnel to fill the burette with sulfuric acid before starting the titration. After filling, the student forgets to remove the funnel from the top of the burette.	Do not write outside the box
	Suggest why this might affect the titre volume recorded.	
	[1 mark]	
0 2.3	State one advantage of using a conical flask rather than a beaker for the titration. [1 mark]	
		7

Turn over for the next question

Turn over ►

			6				
0 3	This qu	estion is about time of	flight (TOF) m	nass spectron	netry.		
0 3.1	Define	the term relative atomi	c mass.			[2 marl	ks]
0 3.2	A samp	ole of krypton is ionised	d using electro	n impact.			
	The ma	ass spectrum of this sa	mple of krypto	n has four pe	eaks.		
	Table 2	2 shows data from this	spectrum.				
			Tab	le 2			
		m/z	82	83	84	86	
		Relative intensity	6	1	28	8	
	Calcula	te the relative atomic r	mass ($A_{\rm r}$) of th	is sample of	krypton.		
	Give yo	our answer to 1 decima	al place.			[2 marl	ks]
						_	
				A r			_

Do not write
outside the
box

0	3	3

In a TOF mass spectrometer, ions are accelerated to the same kinetic energy (KE).

The kinetic energy of an ion is given by the equation $KE = \frac{1}{2} mv^2$

Where:

KE = kinetic energy / J m = mass / kg v = speed / m s⁻¹

In a TOF mass spectrometer, each 84 Kr $^+$ ion is accelerated to a kinetic energy of 4.83 × 10 $^{-16}$ J and the time of flight is 1.72 × 10 $^{-5}$ s

Calculate the length, in metres, of the TOF flight tube.

The Avogadro constant, $L = 6.022 \times 10^{23} \,\mathrm{mol^{-1}}$

[4 marks]

Length of flight tube

m

8

Turn over for the next question

Turn over ▶

0 4	This question is about enthalpy changes.
0 4.1	State the meaning of the term enthalpy change as applied to a chemical reaction. [1 mark]
0 4 . 2	A student determines the enthalpy change for the reaction between calcium carbonate and hydrochloric acid.
	$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(l)$
	The student follows this method:
	 measure out 50 cm³ of 1.00 mol dm⁻³ aqueous hydrochloric acid using a measuring cylinder and pour the acid into a 100 cm³ glass beaker weigh out 2.50 g of solid calcium carbonate on a watch glass and tip the solid into the acid
	 stir the mixture with a thermometer record the maximum temperature reached.
	The student uses the data to determine a value for the enthalpy change.
	Explain how the experimental method and use of apparatus can be improved to provide more accurate data.
	Describe how this data from the improved method can be used to determine an accurate value for the temperature change.
	[6 marks]

_	
_	
_	
_	
_	
_	
_	
_	
_	
_	
_	
_	
_	
-	
_	
_	
_	
_	
	Question 4 continues on the next page

Do not write outside the box

0 4 . 3	In a different experiment 50.0 cm ³ of 0.500 mol dm ⁻³ aqueous hydrochloric acid are
	reacted with 50.0 cm ³ of 0.500 mol dm ⁻³ aqueous sodium hydroxide.

$$NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H_2O(I) \quad \Delta H = -57.1 \text{ kJ mol}^{-1}$$

The initial temperature of each solution is 18.5 °C

Calculate the maximum final temperature of the reaction mixture.

Assume that the specific heat capacity of the reaction mixture, $c = 4.18 \text{ J K}^{-1} \text{ g}^{-1}$

Assume that the density of the reaction mixture = 1.00 g cm^{-3}

[5 marks]

	Final temperature °C
0 4.4	Suggest how, without changing the apparatus, the experiment in Question 04.3 could be improved to reduce the percentage uncertainty in the temperature change. [1 mark]

0 5 . 1	This question is about Group 2 elements and their compounds. Explain why the melting point of magnesium is higher than the melting point of sodium.
	[2 marks]
0 5.2	Give an equation to show how magnesium is used as the reducing agent in the extraction of titanium.
	Explain, in terms of oxidation states, why magnesium is the reducing agent. [2 marks] Equation
	Explanation
	Question 5 continues on the next page

Turn over ▶

0 5.3	State what is observed when dilute aqueous sodium hydroxide is added to separate	Do not write outside the box
	solutions of magnesium chloride and barium chloride. [2 marks]	
	Observation with magnesium chloride	
	Observation with barium chloride	6

0 6

10			
This question is about shapes of molecules and ions.			Do not write outside the box
Draw the shape of NCl₃ and of NCl₄⁺			
nclude any lone pairs of electrons that influence the sh	ape.		
Name the shape of NCl ₃			
State and explain the bond angle in NCl₄ ⁺			
		[5 marks]	
Shape of NCl₃	Shape of NCl ₄ ⁺		
Name of shape of NCl ₃			
Bond angle in NCl₄⁺			
Explanation of bond angle in NCl₄ ⁺			

Turn over for the next question

Turn over ►

5

		$\overline{}$
0 7	This question is about Group 7 elements and their compounds.	
0 7.1	Chlorine is used to treat water even though it is toxic to humans.	
	Give one reason why water is treated with chlorine.	
	Explain why chlorine is added to water even though it is toxic.	
	Give an equation for the reaction of chlorine with cold water. [3 marks]	s]
	Reason	_
	Explanation	_ _ _
	Equation	_
		-

Do not w	rite
outside t	the
box	

0 7 . 2	Solid sodium iodide reacts with concentrated sulfuric acid to form iodine and sulfur in a redox reaction.
	Give a half-equation to show the conversion of iodide ions to iodine.
	Give a half-equation to show the conversion of sulfuric acid to sulfur.
	Give an overall equation for this redox reaction.
	Identify one other sulfur-containing reduction product formed when solid sodium iodide reacts with concentrated sulfuric acid.
	[4 marks]
	Half-equation for the conversion of iodide ions to iodine
	Half-equation for the conversion of sulfuric acid to sulfur
	Overall equation
	Other sulfur-containing reduction product

Question 7 continues on the next page

A student completes an experiment to determine the percentage by mass of sodium chloride in a mixture of sodium chloride and sodium iodide.

The student uses this method.

- 600 mg of the mixture are dissolved in water to form a solution.
- An excess of aqueous silver nitrate is added to the solution. This forms a
 precipitate containing silver chloride and silver iodide.
- Excess dilute ammonia solution is then added to the precipitate. The silver chloride dissolves.
- The silver iodide is filtered off from the solution, and is then washed and dried.

The mass of the silver iodide obtained is 315 mg

0 7.3	Silver nitrate is added to the solution. Suggest why an excess is used.	1 mark]
0 7.4	Calculate the amount, in moles, of silver iodide obtained. $M_{\rm r}({\rm AgI}) = 234.8$	1 mark]
	Amount of silver iodide	mol

			Do not week-
0 7.5	Calculate, using your answer to Question 07.4 , the mass, in grams, of sodium the mixture.	ım iodide	Do not write outside the box
	$M_{\rm r}({\rm NaI}) = 149.9$	[1 mark]	
	Mass of sodium iodide	g	
0 7.6	Calculate, using your answer to Question 07.5 , the percentage by mass of sodium chloride in the mixture.		
		[2 marks]	
	Percentage of sodium chloride		12

Turn over for the next question

Turn over ▶

- 0 8 This question is about a volatile liquid, A.
- 0 8. 1 A student does an experiment to determine the relative molecular mass (M_r) of liquid **A** using the apparatus shown in **Figure 2**.

The student injects a sample of **A** into a gas syringe in an oven.

At the temperature of the oven, liquid **A** vaporises.

Figure 2

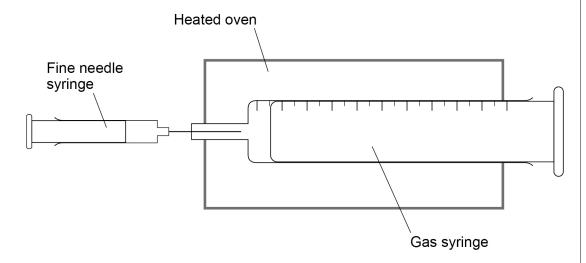


Table 3 shows the student's results.

Table 3

Mass of fine needle syringe and contents before injecting	11.295 g
Mass of fine needle syringe and contents after injecting	10.835 g
Volume reading on gas syringe before injecting	0.0 cm ³
Volume reading on gas syringe after injecting	178.0 cm ³
Pressure of gas in syringe	100 kPa
Temperature of oven	120 °C

	Calculate the M_r of A .	
	Give your answer to 3 significant figures.	
	The gas constant, $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$	[4 marks]
		[4 marks]
	<i>M</i> _r	
0 8.2	The student noticed that some of the liquid injected into the gas syringe did not vaporise.	
	Explain the effect that this has on the M_r calculated by the student.	[2 marks]
	Question 8 continues on the next page	

Turn over ▶

Table 3 is repeated here.

Table 3

Mass of fine needle syringe and contents before injecting	11.295 g
Mass of fine needle syringe and contents after injecting	10.835 g
Volume reading on gas syringe before injecting	0.0 cm ³
Volume reading on gas syringe after injecting	178.0 cm ³
Pressure of gas in syringe	100 kPa
Temperature of oven	120 °C

Each reading on the balance used to record the mass of the fine needle syringe and contents had an uncertainty of ±0.001 g

Calculate the percentage uncertainty in the mass of liquid ${\bf A}$ injected in this experiment.

[1 mark]

Percentage uncertainty	

Section B

	Answer all questions in this section.	
, •	answer per question is allowed. answer completely fill in the circle alongside the appropriate answer.	
CORRECT ME	THOD WRONG METHODS	
If you war	t to change your answer you must cross out your original answer as	shown.
If you wisl as shown	n to return to an answer previously crossed out, ring the answer you r	now wish to select
	do your working in the blank space around each question but this will e additional sheets for this working.	not be marked.
0 9	Which atom has the smallest number of neutrons?	[1 mark]
	A ³ H	0
	B ⁴ He	0
	C ⁵He	0
	D ⁴ Li	0
1 0	Which species contains bonds that have different polarities?	[1 mark]
	A NH ₄ ⁺	0
	B CCl ₄	0
	C CH₃Cl	0
	D H ₃ O ⁺	0

Turn over ▶

Do not write outside the box

1 1	Which compound has hydrogen bonding?	[1 mark]
	A NaH	0	
	B NH ₃	0	
	C HI	0	
	D SiH ₄	0	
1 2	Which reaction has an enthalpy change equal to the standard enthalp lithium fluoride?		ation of 1 mark]
	A $Li(g) + \frac{1}{2}F_2(g) \rightarrow LiF(s)$	0	
	B $Li^+(g) + F^-(g) \rightarrow LiF(s)$	0	
	C Li ⁺ (aq) + F ⁻ (aq) \rightarrow LiF(s)	0	
	$D \operatorname{Li}(s) + \frac{1}{2} F_2(g) \to \operatorname{LiF}(s)$	0	
1 3	NO_2^- ions can be reduced in acidic solution to NO How many electrons are gained when each NO_2^- ion is reduced?	[1 mark]
	A 1	0	
	B 2	0	
	C 3	0	
	D 4	0	

1 4	Which is the electron configuration of an atom with only two unpaired	d electro	ons? [1 mark]	Do not write outside the box
	A 1s ² 2s ² 2p ³	0		
	B 1s ² 2s ² 2p ⁴	0		
	C $1s^2 2s^2 2p^6 3s^2 3p^5$	0		
	$\textbf{D} \ 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^5$	0		
1 5	Which represents the correct order of increasing radius of the ions?		[1 mark]	
	A F ⁻ O ²⁻ Li ⁺ Be ²⁺	0		
	B Li ⁺ Be ²⁺ O ²⁻ F ⁻	0		
	C Be ²⁺ Li ⁺ F ⁻ O ²⁻	0		
	D O ²⁻ F ⁻ Li ⁺ Be ²⁺	0		
1 6	Which compound contains a co-ordinate bond?		[1 mark]	
	A HF	0		
	B NH ₃	0		
	C CHCl ₃	0		
	D NH ₄ Cl	0		

Turn over ▶

1 7	Which property increases down Group 7?			Do not write outside the box
			[1 mark]	
	A ability to oxidise a given reducing agent	0		
	B boiling point	0		
	C electronegativity	0		
	D first ionisation energy	0		
1 8	Which of these elements has the highest melting point?		[1 mark]	
	A Argon	0		
	B Chlorine	0		
	C Silicon	0		
	D Sulfur	0		
1 9	Which statement is not always correct for a reaction at equilibrium?			
.,,,	reactants ⇌ products			
	redotants — products		[1 mark]	
	A The concentrations of the reactants and products are equal.	0		
	B The equilibrium can be achieved starting from the reactants.	0		
	C The equilibrium can be achieved starting from the products.	0		
	D The rate of the forward reaction is equal to the rate of the reverse reaction.	0		

2 0

Two reactions of iron with oxygen are shown.

$$Fe(s) + \frac{1}{2}O_2(g) \rightarrow FeO(s)$$

$$\Delta H = -272 \text{ kJ mol}^{-1}$$

$$2 \operatorname{Fe}(s) + \frac{3}{2} O_2(g) \to \operatorname{Fe}_2 O_3(s)$$
 $\Delta H = -822 \text{ kJ mol}^{-1}$

$$\Delta H = -822 \text{ kJ mol}^{-1}$$

What is the enthalpy change, in kJ mol⁻¹, for this reaction?

$$2\,\text{FeO}(s) + \tfrac{1}{2}\,O_2(g) \rightarrow \text{Fe}_2O_3(s)$$

[1 mark]

A +550

B -278

C -1094

D -1372

2 1

Which compound contains chlorine in an oxidation state of +1?

[1 mark]

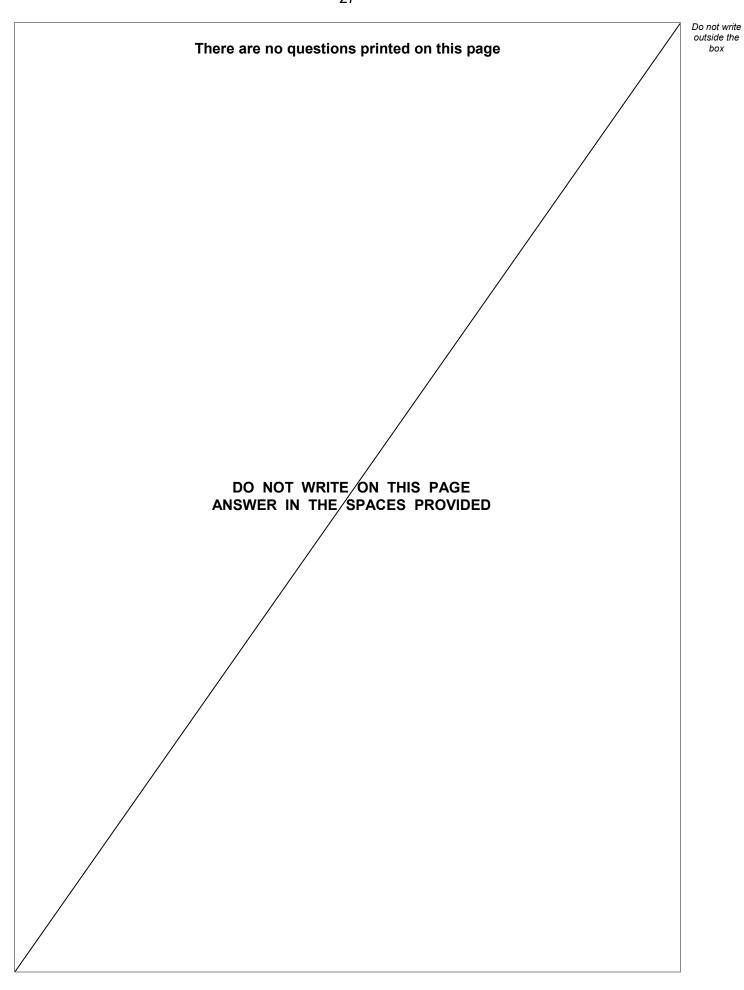
A Cl₂O

B KClO₃

C ClF₃

D CCl₄

Turn over for the next question


Turn over ▶

2 2	Which equation shows a redox reaction that does not occur?	[1 mark]	Do not write outside the box
	A $Br_2(aq) + 2KI(aq) \rightarrow I_2(aq) + 2KBr(aq)$	0	
	$\textbf{B} \ \text{Cl}_2(g) + 2 \text{KI}(aq) \rightarrow \text{I}_2(aq) + 2 \text{KCI}(aq)$	0	
	$\textbf{C} \ \text{Cl}_2(g) + 2 \text{KBr}(aq) \rightarrow \text{Br}_2(aq) + 2 \text{KCl}(aq)$	0	
	$ D I2(aq) + 2KBr(aq) \rightarrow Br2(aq) + 2KI(aq) $	0	
2 3	Which molecule has a permanent dipole?	[1 mark]	
	A CF ₄	0	
	B PCl ₅	0	
	C CO ₂	0	
	D Cl ₂ O	0	15
			1

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

There are no questions printed on this page

Do not write outside the

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2020 AQA and its licensors. All rights reserved.

IB/M/Jun20/7404/1