

Thursday 15 October 2020 – Morning

AS Level Physics A

H156/02 Depth in physics

Time allowed: 1 hour 30 minutes

You must have:

• the Data, Formulae and Relationships Booklet

You can use:

- · a scientific or graphical calculator
- a ruler (cm/mm)

Please write clearly in black ink. Do not write in the barcodes.							
Centre number				Candidate number			
First name(s)							
Last name							

INSTRUCTIONS

- Use black ink. You can use an HB pencil, but only for graphs and diagrams.
- Write your answer to each question in the space provided. If you need extra space use the lined pages at the end of this booklet. The question numbers must be clearly shown.
- Answer all the questions.
- Where appropriate, your answer should be supported with working. Marks might be given for using a correct method, even if your answer is wrong.

INFORMATION

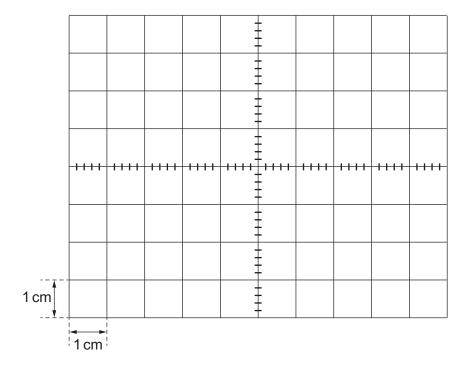
- The total mark for this paper is 70.
- The marks for each question are shown in brackets [].
- Quality of extended response will be assessed in questions marked with an asterisk (*).
- This document has 24 pages.

ADVICE

· Read each question carefully before you start your answer.

(i)

2


Answer all the questions.

1 (a) A sound wave is an example of a longitudinal wave.

State what is meant by the term longitudinal wave.	
	[1]

(ii) A microphone is connected to an oscilloscope. Sound of frequency 500 Hz is incident on the microphone.

The oscilloscope time-base is set to 0.5 ms cm⁻¹ and the *y*-gain set to 1.0 mV cm⁻¹. The signal displayed on the oscilloscope screen has an amplitude of 2.0 mV. The oscilloscope grid is shown below.

Sketch the oscilloscope trace on the grid above.

[2]

(b)	Micı	crowaves and X-rays are examples of electromagnetic waves.						
	(i)	The following are possible wavelengths of electromagnetic waves.						
		0.2 km	2 m	2cm	0.2 mm	$2\mu m$	200 nm	200 pm
		Select from the list above a typical wavelength of a microwave and an X-ray.						
		microwave						
	X-ray							[2
	(ii)	·						
	State two other properties.							
	1							
		2						
							[2	

2 (a) The table shows the refractive index n of air and glass for blue light. It also shows the speed v and the wavelength λ of blue light in air.

	air	glass
refractive index n	1.00	1.53
speed of light v/ms ⁻¹	3.00 × 10 ⁸	
wavelength λ/m	4.69 × 10 ⁻⁷	

(i) Show that the frequency f of blue light in air is 6.40×10^{14} Hz.

(ii) Complete the table by determining the missing values for v and λ for glass. Write your answers to 3 significant figures.

[2]

[1]

(b) A semi-circular block of glass is placed in air.

Fig. 2.1 shows the path of blue light through the air and the semi-circular glass block.

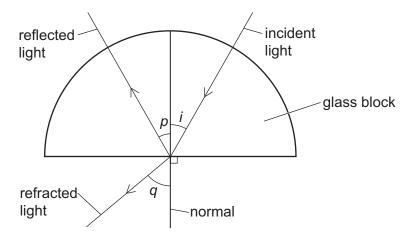


Fig. 2.1 (not to scale)

- (i) The angle i is 30° .
 - **1.** Determine angle p.

2. Determine angle q, using the information from the table in (a).

ii)	The angle i is increased from 30° to 60°. Describe and explain how angles p and q will change. In your answer, include the terr critical angle.	n
		••
		••
		• •
		••
		• •
	[4	11

(c) Fig. 2.2 shows the same semi-circular glass block with the blue light replaced by red light.

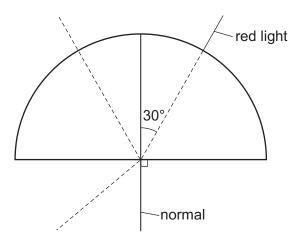


Fig. 2.2 (not to scale)

The dashed lines show the original paths of the blue light.

Draw on **Fig. 2.2** the path of the red light in the glass block and out of the glass block. [2]

3 Fig. 3.1 shows an experiment to investigate the extension of two identical springs connected side by side. A student uses a 30 cm ruler to measure the length L_0 of the two-spring combination without a load attached.

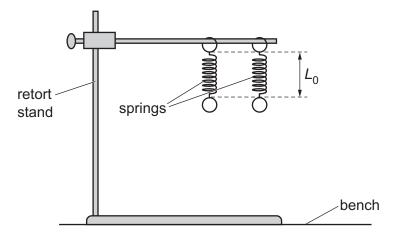


Fig. 3.1

The student then adds a rod and a mass *M* to the spring combination as shown in **Fig. 3.2**.

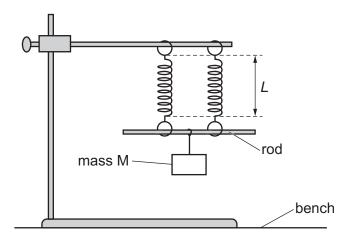
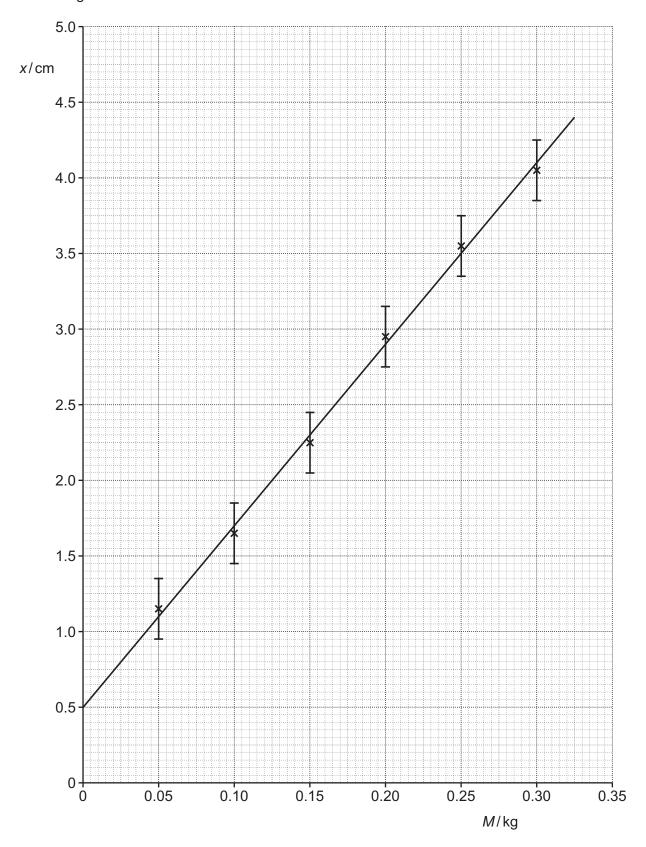



Fig. 3.2

The student then repeats the experiment for different values of M. For each value of M, the student determines the extension x of the spring combination and the absolute uncertainty in x.

The student plots a graph of extension x (y-axis) against mass M (x-axis) including error bars in x. The straight line of best fit is drawn.

It is suggested that the relationship between *x* and *M* is

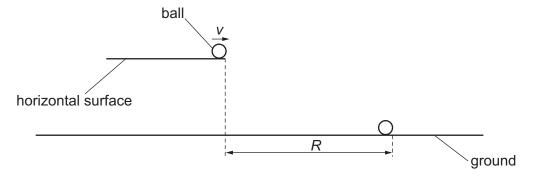
$$x = \frac{Mg}{k} + R$$

where k is the force constant of the spring combination, g is the acceleration of free fall and R is a constant.

(a) (i) Show that the gradient of the straight line of best fit is about $0.12 \,\mathrm{m\,kg^{-1}}$.

(ii) Using the gradient, determine a value for *k*. Give your answer to an appropriate number of significant figures and include an appropriate unit.

[2]


- (b) (i) Draw a worst acceptable straight line. [1]
 - (ii) Determine the gradient of your worst acceptable line.

(iii) Determine the percentage uncertainty in k.

Turn over

© OCR 2020

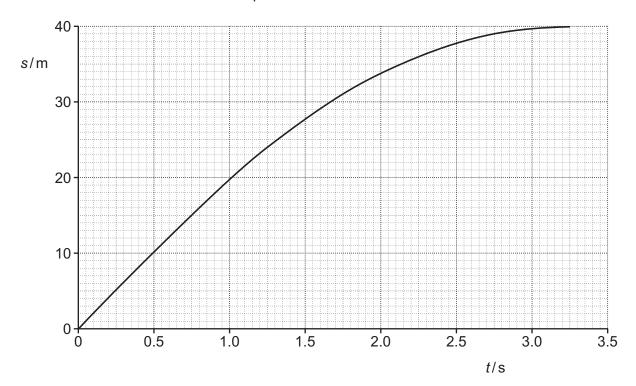
4* A metal ball leaves a horizontal surface with velocity *v*. A student investigates the horizontal distance *R* that the ball travels before it hits the ground.

It is suggested that the relationship between R and v is given by

$$R = v\sqrt{\frac{Q}{g}}$$

where g is the acceleration of free fall and Q is a constant.

Describe with the aid of a suitable diagram how an experiment can be safely conducted, and how the data can be analysed, to determine *Q*. **[6]**


1	1

Additional ans	wer space if requ	ired		

A car is travelling at a constant speed of $20 \,\mathrm{m\,s^{-1}}$ along a straight road.

The driver sees a hazard ahead in the road, applies the brakes and brings the car to a stop.

The graph below shows the displacement s against time t for the car from the time that the driver sees the hazard to when the car stops.

The braking force *F* acting on the car is constant.

The mass of the car is 950 kg.

The reaction time of the driver is 0.75s.

(a) State the gradient of the graph when t = 0.

(b)	Explain how you can deduce from the graph that the brakes are applied at time $t = 0.75 \text{s}$.
(c)	Draw a tangent to the graph at time $t = 1.75$ s. Use this tangent to show that the speed of the car at $t = 1.75$ s is about $12 \mathrm{ms^{-1}}$.
	Ose this tangent to show that the speed of the car at $t = 1.75$ is about 12 ms \cdot .
(d)	Determine the braking force <i>F</i> . You may use information from (c) or from the graph.
	F = N [3]
(e)	Describe and explain the variation of the displacement with time when the same driver applies the brakes in the same car when the initial speed of the car is 10 m s ⁻¹ .
	[3]

6 Fig. 6.1 shows a uniform metal cylinder of weight 7.0 N. The cylinder has length 100 mm and diameter 32 mm.

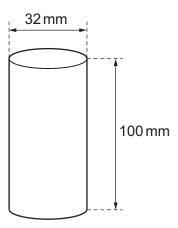


Fig. 6.1 (not to scale)

(a) Calculate the density ρ of the metal.

$$\rho$$
 = kg m⁻³ [3]

(b) The cylinder is suspended by two cords **A** and **B**, attached to the centre of the top surface, as shown in **Fig. 6.2**.

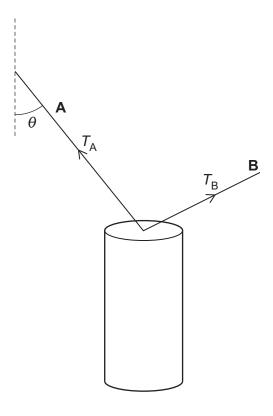


Fig. 6.2 (not to scale)

The tensions in each of the cords are $T_{\rm A}$ and $T_{\rm B}.$

Fig. 6.3 shows $T_{\rm B}$ drawn to scale on graph paper.

Scale 1.0 cm represents 2.0 N.

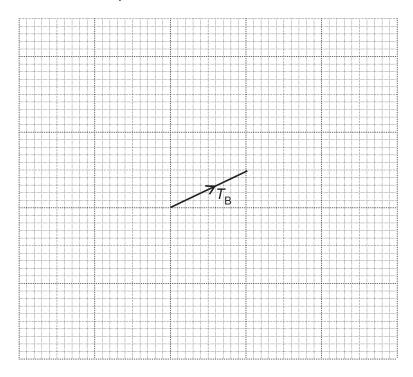


Fig. 6.3

(i) Determine the magnitude of $T_{\rm B}$.

(ii) Draw a triangle of forces on Fig. 6.3 to represent the forces acting on the cylinder. Determine the magnitude of $T_{\rm A}$.

(iii) Determine the angle θ in Fig. 6.2.

(c) Fig. 6.4 shows the same cylinder at rest on a bench.

A horizontal force *F* is applied to the cylinder so that it can rotate about point **X**.

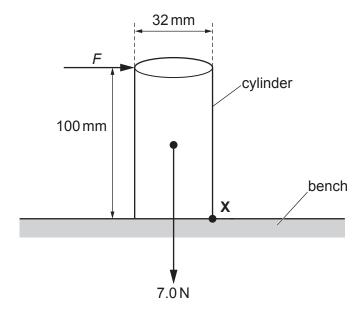


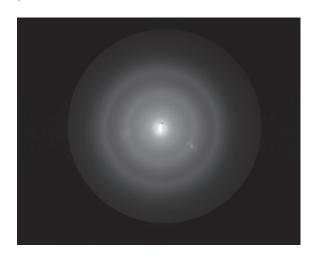
Fig. 6.4 (not to scale)

Calculate the minimum value of *F* to just topple the cylinder about **X**.

F = N [2]

17 BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE


Question 7 is on page 18

7	A 1	50 VV	heater constructed from nichrome wire is switched on for 5.0 hours.
			e has a cross-sectional area of 4.1 × 10 ⁻⁹ m ² . The section of
			ober density of charge carriers in nichrome is $7.9 \times 10^{28} \mathrm{m}^{-3}$.
	(a)	Cal	culate
		(i)	the resistance R of the heater
			D 0 101
			R = Ω [2]
		(ii)	the number <i>N</i> of electrons passing through the heater in 5.0 hours
			N =[2]
		(iii)	the mean drift velocity <i>v</i> of the electrons (charge carriers) in the heater.
			4
			$v = \dots ms^{-1}$ [2]

(b)	The cost of 1 kWh of energy is 16p. Calculate the cost of using the heater for 5.0 hours.
(c)	cost =
(0)	Nichonie is a metal. Silicon is a semiconductor.
	State how the number density of charge carriers n and the resistivity ρ of silicon compare with that of nichrome.
	n
	ρ
	[2]

Question 8 is on page 20

8* A student is investigating electron diffraction. A beam of electrons is directed towards a thin slice of graphite in an evacuated tube.
The electrons are accelerated by a potential difference of 2000 V. The diagram below shows the pattern formed on the fluorescent screen of the evacuated tube.

Describe and explain how the pattern changes as the potential difference is increased. how the de Broglie wavelength λ of the electron is related to the potential difference V .	[6]

21

Additional answer spa	•	

END OF QUESTION PAPER

22 ADDITIONAL ANSWER SPACE

f additiona must be cle	al space is required, you should use the following learly shown in the margin(s).	g lined page(s). The question number(s

	,
• • • • • • • • • • • • • • • • • • • •	
	· · · · · · · · · · · · · · · · · · ·

•••••		

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.