

AQA Level 2 Certificate in FURTHER MATHEMATICS (8365/2)

Paper 2

Specimen 2020

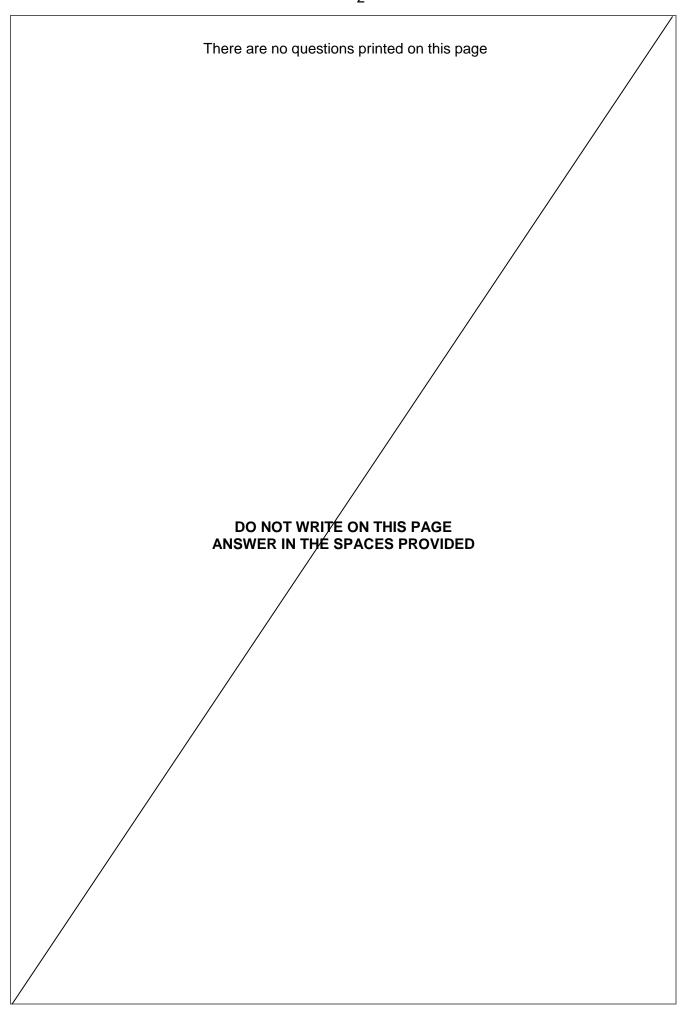
Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

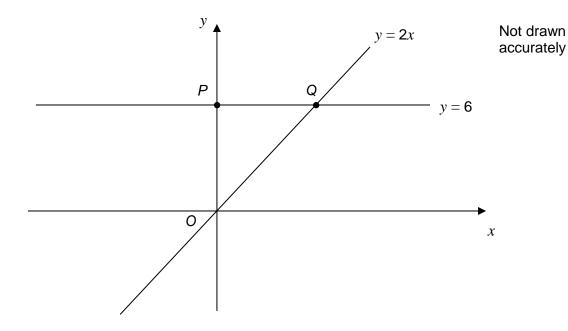
mathematical instruments

You may use a calculator


Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the bottom of this page.
- Answer all questions.
- You must answer the questions in the space provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information


- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.
- You may ask for more answer paper, graph paper and tracing paper.
 These must be tagged securely to this answer booklet.

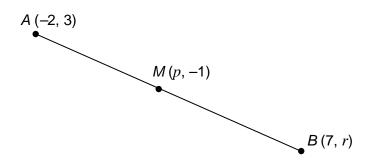
Please write clearly, in block capitals, to allow character computer recognition.			
Centre number Candidate number Candidate number			
urname			
prename(s)			
Candidate signature			

Answer all questions in the spaces provided.

1 A sketch of the lines y = 2x and y = 6 is shown.

Work out the area of triangle OPQ.

[3 marks]


Answer	units ²
--------	--------------------

2 A circle, centre (0, 0) has circumference 20π

Work out the equation of the circle.

[2 marks]

3 M is the midpoint of the line AB.

Not drawn accurately

Work out the values of p and r.

[2 marks]

$$p =$$

$$r =$$

4 (a) Circle the solution of -3x < -18

[1 mark]

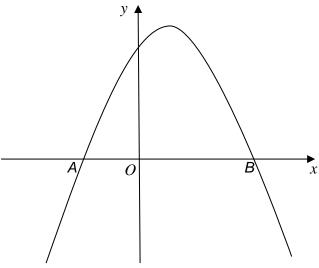
$$x > -6$$
 $x < -6$ $x > 6$ $x < 6$

$$r < -6$$

 $x^2 \geqslant 16$ Circle the solution of 4 (b)

[1 mark]

$$x \geqslant -4$$
 or $x \leqslant 4$


$$x \leqslant -4$$
 or $x \geqslant 4$

$$x \geqslant -4$$
 or $x \geqslant 4$

$$x \leqslant -4$$
 or $x \leqslant 4$

5	Here is a sketch of	y = f(x)	where $f(x)$ is a quadratic function.
	The graph		

intersects the x-axis at A (-1, 0) and B has a maximum point at (0.5, 6)

accurately

5 (a) Work out the coordinates of B.

[1 mark]

Not drawn

5 (b) The equation f(x) = k has exactly **one** solution.

Write down the value of k.

[1 mark]

6
$$\mathbf{A} = \begin{pmatrix} 4 & -1 \\ -7 & 2 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} s \\ -5 \end{pmatrix} \qquad \mathbf{C} = \begin{pmatrix} -1 \\ t \end{pmatrix} \qquad \mathbf{D} = \begin{pmatrix} 2 & 1 \\ 7 & u \end{pmatrix}$$

s, t and u are constants.

6 (a)
$$AB = C$$

Work out the values of s and t.

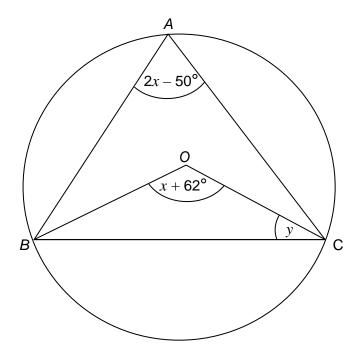
[3 marks]

$$s =$$

6 (b)	AD = I	
	Work out the value of u .	[1 mark]
		[1 mark]
	$u = \underline{\hspace{1cm}}$	
7	Work out the equation of the straight line that is	
	parallel to the line $2y = x$	
	and intersects the <i>x</i> -axis at (4, 0)	
		[3 marks]
	Answer	

8 (a)	Work out	$\frac{ab}{cd}$ ÷	$\frac{bc}{ac}$
		c.a	- 111

Give your answer as a single fraction in its simplest form.


[2 marks]

8 (b) Work out
$$\frac{7}{2x^2} + \frac{4}{3x}$$

Give your answer as a single fraction in its simplest form.

[2 marks]

9 A, B and C are points on a circle, centre O.

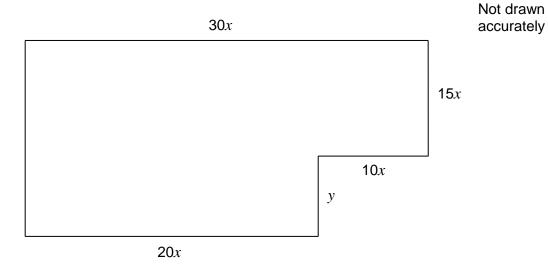
Not drawn accurately

work out the size of angle y.	[5 marks]

Answer

degrees

10	v -	$6x^9 + x^8$
10	у –	$2x^4$


Work out the value of $\frac{d^2y}{dx^2}$ when x = 0.5

[5 IIIai KS

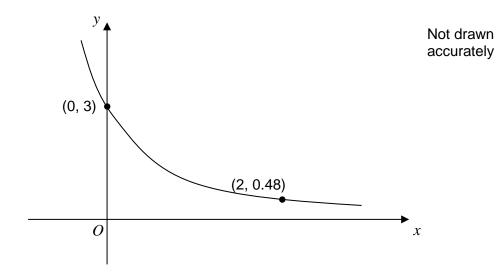
11	For sequence A, n th term = $\frac{n}{14n + 30}$	
	For sequence B, n th term = $\frac{2}{n}$	
	The k th term of sequence A equals the k th term of sequence B.	
	Work out the value of k .	
	You must show your working.	[4 marks]
	Answer	

12 This shape is made from two rectangles.

All dimensions are in centimetres.

12 (a) The perimeter of the shape is 252 cm

Show that	y = 126 - 45x
-----------	---------------


[2 marks]

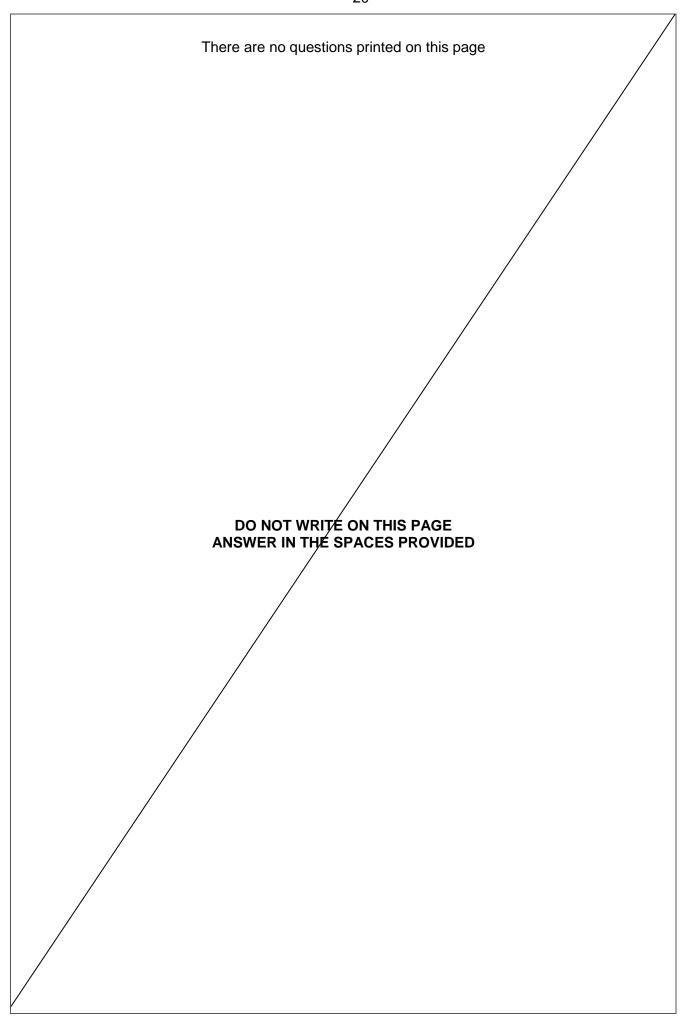
12 (b)	The area of the shape is $A \text{ cm}^2$	
	Show that $A = 2520x - 450x^2$	[2 marks]
12 (c)	Use differentiation to work out the maximum value of A as x varies.	[3 marks]
		[3 marks]
	Answer	

13	$f(x) = 3x^2 + 6 \qquad \text{for all } x$ $g(x) = \sqrt{x - 5} \qquad x \ge 5$	
13 (a)	Work out the value of gf(4)	[2 marks]
	Answer	_
13 (b)	Show that $fg(x)$ can be written in the form $a(x-a)$ where a is an integer.	[2 marks]
	Answer	_

14	Use the sine rule to work out the size of obtuse angle x.				
	y 2y 18°	Not drawn accurately			
		[3 marks]			
	Answer	degrees			

Here is a sketch of the curve $y = ab^{-x}$ where a and b are positive constants. (0, 3) and (2, 0.48) lie on the curve.

Work out the values of a and b.

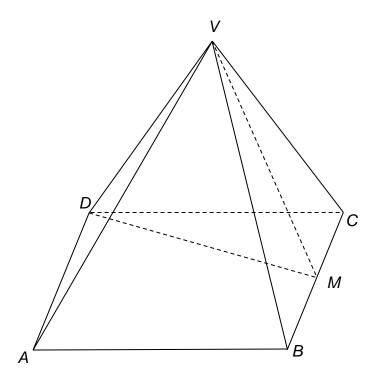

[4 marks]

$$a =$$

16	Simplify	$\frac{8x^3 - 50x}{2x(6x^2 - x - 35)}$			
	Give your a	nswer in the form	$\frac{ax+b}{cx+d}$	where a , b , c and d are integers.	[5 marks]
		Answ	/er		

By multiplying both sides of the equation by $x^{\frac{1}{2}}$ Solve $2x^{\frac{3}{2}} - 3x^{\frac{1}{2}} = 7x^{-\frac{1}{2}}$ for $x > 0$ Give your answer to 3 significant figures. You must show your working. [41]	
Give your answer to 3 significant figures. You must show your working. [4]	
You must show your working. [41]	
	mark
Answer	mar
Answer	

marks]
marks]


19	$f(x) = 3x^3 - 2x^2 - 7x - 2$	
19 (a)	Use the factor theorem to show that $(3x + 1)$ is a factor of $f(x)$.	[2 marks]
19 (b)	Factorise f(x) fully.	[3 marks]
	Answer	_

VABCD is a pyramid with a horizontal rectangular base ABCD.V is directly above the centre of the base.

$$VA = VB = VC = VD = 10 \text{ cm}$$

$$AB = 8 \text{ cm}$$
 $BC = 6 \text{ cm}$

M is the midpoint of *BC*.

Work out the size of angle	e VMD.	[5 r
A	Answer	degrees

21	Show that	$(2n+3)^3+n^3$	is divisible by 9 for all integer values of n .	[4 marks]
			END OF QUESTIONS	

Copyright © 2019 AQA and its licensors. All rights reserved.