

Monday 12 October 2020 – Morning

AS Level Biology A

H020/01 Breadth in biology

Time allowed: 1 hour 30 minutes

*821065587

You	can	use:
-----	-----	------

- · a scientific or graphical calculator
- a ruler (cm/mm)

Please write cle	arly in	black	k ink.	Do no	ot writ	e in the barcodes.		
Centre number						Candidate number		
First name(s)								
Last name								

INSTRUCTIONS

- Use black ink. You can use an HB pencil, but only for graphs and diagrams.
- Write your answer to each question in the space provided. If you need extra space use the lined pages at the end of this booklet. The question numbers must be clearly shown.
- · Answer all the questions.
- Where appropriate, your answer should be supported with working. Marks might be given for using a correct method, even if your answer is wrong.

INFORMATION

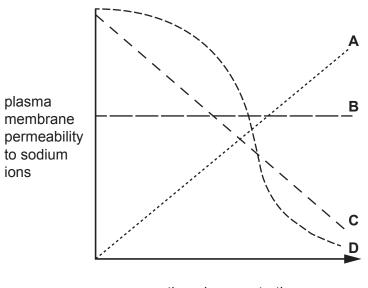
- The total mark for this paper is 70.
- The marks for each question are shown in brackets [].
- · This document has 24 pages.

ADVICE

· Read each question carefully before you start your answer.

2

SECTION A


You should spend a maximum of 25 minutes on this section.

Write your answer for each question in the box provided.

Answer **all** the questions.

1	Which of the following stages, A to D , of the cell cycle, would DNA polymerase be most active?		
	Α	G_1	
	В	G_2	
	С	mitosis	
	D	S	
	You	r answer	[1]
2	Whi	ch statement, A to D , describes the function of DNA polymerase?	
	Α	break the hydrogen bonds between complementary bases	
	В	make phosphodiester bonds between adjacent nucleotides	
	С	make phosphodiester bonds between polynucleotides	
	D	make the hydrogen bonds between complementary bases	
	You	r answer	[1]

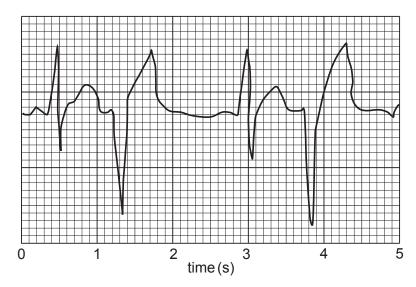
Which of the lines, **A** to **D**, in the graph below, represents the effect of increasing ethanol concentration on the permeability of the plasma membrane to sodium ions?

ethanol concentration

4 Which of the rows, **A** to **D**, in the table below shows the correct order of increasing complexity of organisation within an organism?

Α	epithelium	goblet cell	lung	respiratory system
В	epithelium	respiratory system	goblet cell	lung
С	goblet cell	epithelium	lung	respiratory system
D	goblet cell	lung	respiratory system	epithelium

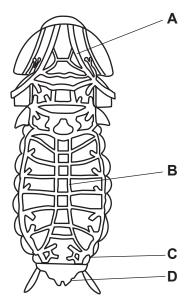
5 The image below shows Dawlish Warren, which is a conservation area in the UK.


Which of the following is an aesthetic reason for maintaining biodiversity in Dawlish Warren?

- A maintaining the 200 different animal species
- **B** maintaining the area as a tourist destination to support local businesses
- **C** preventing the disappearance of the coastal landscape
- **D** protecting the sparrowhawk, which is a keystone species

Your answer	[1]

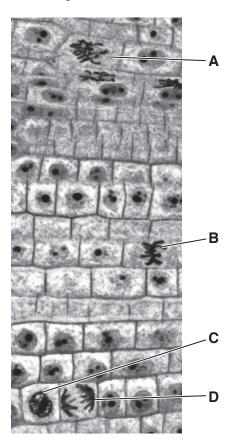
6		s. These proteins ar		•	ice crystal formation in living evolved independently of each		
	Which of the following phrases explains why this convergent evolution has occurred?						
	Α	adaptation to fill a	similar niche				
	В	continuous variatio	on of these species				
	С	interspecific variati	ion				
	D	·	curs in these species				
	D		curs in these species				
	You	r answer			[1]		
7	The	table below shows	the different percentages	of three different of	components of blood vessels.		
•		table below snows	the different percentages		n		
		elastin (%)	smooth muscle (%)	collagen (%)			
	Α	8	33	58			
	В	17	39	43			
	С	56	11	33			
	D	56	45	10			
	Whi	ch of the rows, A to	D , shows the relative pro	oportions of the co	mponents of the aorta?		
	You	r answer			[1]		
8	Whi	ch of the following.	A to D , is an example of	disease transmitte	d by a vector?		
	Α	athlete's foot from	•				
	В	bubonic plague fro	m rat fleas				
	С	catching bird flu fro	om inhaling water droplets	8			
	D	salmonella from ur	ndercooked chicken				
	You	r answer			[1]		


9 The trace below is an electrocardiogram (ECG) of an abnormal heart activity.

What is the name for this abnormal heart activity?

- **A** bradycardia
- **B** ectopic heartbeat
- **C** fibrillation
- **D** tachycardia

10 The drawing below shows the respiratory system of an insect.


Which of the letters, **A** to **D**, shows a spiracle?

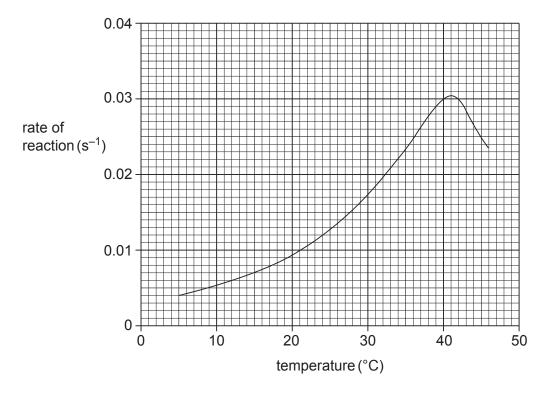
- 11 Which of the following muscles in the mammalian ventilation system contract to force air out of the lungs?
 - A all of the muscles in the mammalian ventilation system
 - **B** the external intercostal muscles
 - **C** the diaphragm
 - **D** the internal intercostal muscles

Your answer [1]

12 The image below shows onion root tissue. Some of the cells in the tissue are undergoing mitosis.

Which of the label lines, A to D, shows a cell that is in anaphase?

Your answer	[1]
-------------	-----


13 A student is investigating species richness of plants along a sand dune from the sea edge moving inland. They are testing the hypothesis that 'species richness increases with distance from the sea'.

Which of the sampling methods, **A** to **D**, would the student use?

- **A** opportunistic
- **B** random
- C stratified
- **D** systematic

Your answer	[1]
-------------	-----

14 The graph below shows how the rate of reaction of the enzyme pepsin changes with temperature.

What is the temperature coefficient, Q₁₀, of this reaction before the enzyme denatures?

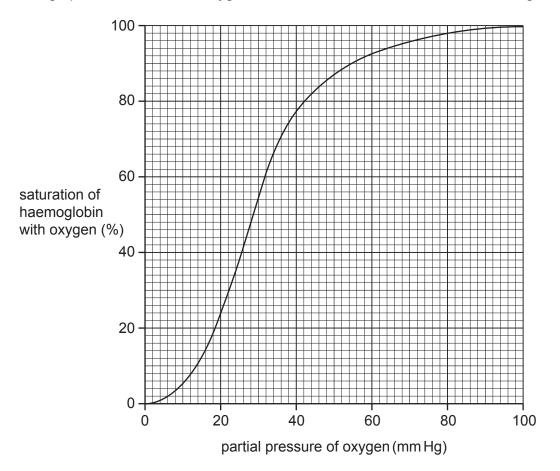
- **A** 0.06
- **B** 0.35
- **C** 1.80
- **D** 3.98

Your answer	[1
-------------	----

15 Which of the rows, A to D, contains the correct elements that are found in proteins?

	carbon	hydrogen	oxygen	phosphorus	nitrogen	sulphur
Α	✓	✓	✓			
В	1	✓	✓	1	✓	
С	1	✓	✓		✓	✓
D	√	✓	√	✓	√	✓

Your answer	[1]
-------------	-----


16 Oleic acid is a monounsaturated fatty acid found in vegetable oil.

Which of the following, ${\bf A}$ to ${\bf D}$, is the correct structure for oleic acid?

Your answer

[1]

17 The graph below shows the oxygen dissociation curve for adult human haemoglobin.

What is the proportion of oxygen molecules released by haemoglobin between 40 mm Hg and 20 mm Hg?

- **A** 0.31
- **B** 0.69
- **C** 2.21
- **D** 3.21

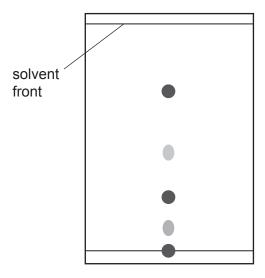
Your answer [1]

18	Hur	nan pancreatic lipase breaks the bonds between fatty acids and glycerol.	
	Wha	at name is given to this reaction?	
	Α	condensation	
	В	esterification	
	С	hydration	
	D	hydrolysis	
	You	r answer	[1]
19	A co	onjugated protein is held together by many different types of bond.	
	Whi	ch bond is not formed when a conjugated protein folds into its quaternary structure?	
	Α	disulphide	
	В	hydrogen	
	С	ionic	
	D	peptide	
	You	r answer	[1]
20	The	re are four different human blood groups: A, B, AB and O.	
	This	s is because there are three different alleles coding for different proteins in red blood cells.	
	Whi	ch of the letters, A to D , describes this form of variation?	
	Α	continuous and intraspecific	
	В	continuous and interspecific	
	С	discontinuous and intraspecific	
	D	discontinuous and interspecific	
	You	r answer	[1]

13 SECTION B

Answer all the questions.

21 A zygote undergoes rapid cell division. (a) Explain why the type of nuclear division in a zygote is mitosis and not meiosis.[2] (b) After many rounds of cell division, the zygote forms a blastula. A blastula is an animal embryo at an early stage of development. As the blastula develops, it becomes a hollow ball of cells with an inner cell mass. The inner cell mass is a source of embryonic stem cells. Explain the role of embryonic stem cells in the development of the embryo.[2] Explain why the cells of the inner cell mass are **not** totipotent stem cells. (ii)


© OCR 2020 Turn over

.....[2]

22	each with 1050 amino acids, wrapped into a triple helix. A repeating sequence		n is a protein found in arterial walls. A collagen molecule has three polypeptide chains, h 1050 amino acids, wrapped into a triple helix. A repeating sequence of the amino acids and proline occur in each polypeptide chain. These amino acids have non-polar side
	(a)	(i)	Describe and explain why collagen is a fibrous protein.
			[3]
		(ii)	Suggest why collagen is such a strong molecule.
	(b)	Out	line the method of chromatography that will separate the main amino acids in collagen.
	(D)	Out	ille the method of chromatography that will separate the main amino acids in collagen.
			[31]

(c) A student carried out the method of chromatography on a sample labelled 'collagen'. The results can be seen on the chromatogram below.

On a chromatogram, the darker the spot, the higher the concentration of that amino acid.

(i) Calculate Rf values for the two highest concentration amino acids.

Rf value 1 =

Rf value 2 =[2]

(ii) The table shows the Rf values of a range of amino acids.

amino acid	Rf value	
glutamine	0.13	
glycine	0.27	
isoleucine	0.72	
leucine	0.73	
methionine	0.55	
phenylalanine	0.68	
proline	0.43	
tryptophan	0.66	
tyrosine	0.45	
valine	0.61	

The student thought that they may have made an error and **not** used a sample of collagen.

Use the information in the table to conclude whether the chromatogram shows that the protein analysed is collagen.

Explain your answer	r.	
		 [2]

23	The cell.	rough endoplasmic reticulum is where translation of some proteins takes place in a eukaryotic
	(a)	Describe the structure of the rough endoplasmic reticulum.
	(I-)	[3]
	(a)	Explain the role of the membrane in the rough endoplasmic reticulum.

24 A student was comparing transpiration rates in tomato leaves and watermelon leaves. They selected eight separate leaves on different tomato plants and sealed a plastic bag over each leaf. They repeated this process for the watermelon plants. The plastic bags were left for six hours then they used a syringe to collect any water inside the plastic bag. The volume of water was recorded.

An example of their method can be seen in Fig. 24.1.

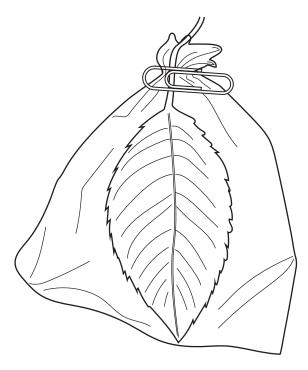


Fig. 24.1

pe improved.	
1	
2	
	4

(a) Identify two problems with this method and for each problem suggest how the method can

(b) The results of the experiment are shown in Fig. 24.2.

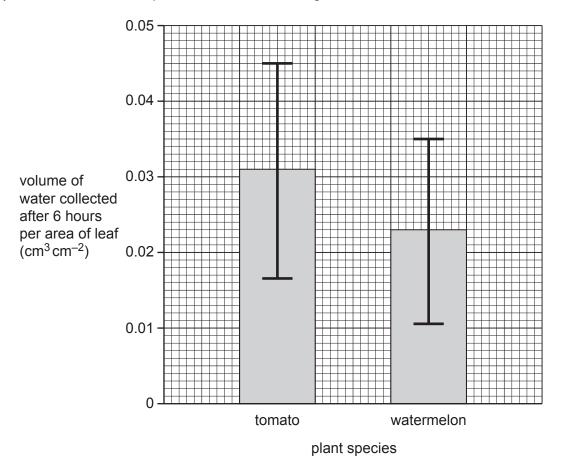


Fig. 24.2

What conclusion can be drawn from this graph? Justify your answer.					
	[2				

(c)	Describe how a potometer can be used to calculate a more accurate rate of transpiration.
	[4]
(d)	Name and describe two pathways that water takes to reach the xylem vessels at the base of the stem.
(d)	
(d)	
(d)	the stem.

			21					
25	(a)	Exp	plain how the nucleotides in a DNA molecule are arranged as two polynucleotide strands.					
		••••						
			[3]					
	(b)	(i)	The human genome contains 3.0×10^9 nucleotides. The replication of DNA takes six hours in some cells.					
			One eukaryotic enzyme complex can replicate DNA at a rate of 50 nucleotides added per second on each complementary strand.					
			Calculate the number of eukaryotic enzyme complexes needed to replicate the DNA in the human genome in six hours.					
			Give your answer in standard form.					
			number of enzyme complexes =					
		(ii)	Name two enzymes involved in DNA replication.					
			1					
			2 [2]					
		(iii)	Explain why enzymes are essential to all organisms.					
		(,	Explain wity onzymoo are cocontain to all organismo.					
			[2]					

26 The table shows the characteristics of five species from the five different kingdoms.

species	organisation	nucleus	cell wall	nutrient source
Solanum tuberosum	multicellular	yes	yes	autotroph
Yersinia pestis	unicellular	no	yes	heterotroph
Cantharellus pallens	unicellular	yes	yes	saprotroph
Ministeria vibrans	unicellular	yes	no	heterotroph
Ailuropoda melanoleuca	multicellular	yes	no	heterotroph

(i)	Name the genus of the protoctist in the table.					
					[1]	
(ii) Use the information in the table to determine the kingdom and cell wall means. S. tuberosum and C. pallens. Write your answers in the table below.						
		species	kingdom	cell wall molecule		
		S. tuberosum				
		C. pallens				
					[2]	
(iii)			etic material is arrange	ed in organisms in the	e same kingdom as	
					[1]	
			cule is used to show th	at two different specie	s have evolved from	
					[2]	
	(iii)	(iii) Use the State of State o	(ii) Use the information in S. tuberosum and C. passecies S. tuberosum C. pallens (iii) Describe how the general Y. pestis. Explain how a specific molecular recent common ancestor.	(iii) Use the information in the table to determin S. tuberosum and C. pallens. Write your answ species kingdom S. tuberosum C. pallens (iii) Describe how the genetic material is arrange Y. pestis. Explain how a specific molecule is used to show the a recent common ancestor.	(iii) Use the information in the table to determine the kingdom and constructions. S. tuberosum and C. pallens. Write your answers in the table below. Secribe S. tuberosum C. pallens C. pallens (iii) Describe how the genetic material is arranged in organisms in the Y. pestis. Explain how a specific molecule is used to show that two different species	

23 ADDITIONAL ANSWER SPACE

lf additiona must be cle	Il space is required, you should use the following lined page(s). early shown in the margin(s).	The question number(s)
	1	

•••••		

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.