

# **GCE**

## **Further Mathematics A**

Y545/01: Additional Pure Mathematics

Advanced GCE

Mark Scheme for November 2020

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2020

### **Text Instructions**

### Annotations and abbreviations

| Annotation in RM assessor | Meaning                                                                                             |
|---------------------------|-----------------------------------------------------------------------------------------------------|
| √and <b>≭</b>             |                                                                                                     |
| BOD                       | Benefit of doubt                                                                                    |
| FT                        | Follow through                                                                                      |
| ISW                       | Ignore subsequent working                                                                           |
| M0,M1                     | Method mark awarded 0, 1                                                                            |
| A0, A1                    | Accuracy mark awarded 0, 1                                                                          |
| B0,B1                     | Independent mark awarded 0, 1                                                                       |
| SC                        | Special case                                                                                        |
| ۸                         | Omission sign                                                                                       |
| MR                        | Misread                                                                                             |
| BP                        | Blank Page                                                                                          |
| Seen                      |                                                                                                     |
| Highlighting              |                                                                                                     |
| Other abbreviations in    | Meaning                                                                                             |
| mark scheme               |                                                                                                     |
| dep*                      | Mark dependent on a previous mark, indicated by *. The * may be omitted if only one previous M mark |
| cao                       | Correct answer only                                                                                 |
| oe                        | Or equivalent                                                                                       |
| rot                       | Rounded or truncated                                                                                |
| soi                       | Seen or implied                                                                                     |
| WWW                       | Without wrong working                                                                               |
| AG                        | Answer given                                                                                        |
| awrt                      | Anything which rounds to                                                                            |
| BC                        | By Calculator                                                                                       |
| DR                        | This question included the instruction: In this question you must show detailed reasoning.          |

#### Subject-specific Marking Instructions for A Level Mathematics A

Annotations must be used during your marking. For a response awarded zero (or full) marks a single appropriate annotation (cross, tick, M0 or ^) is sufficient, but not required.

For responses that are not awarded either 0 or full marks, you must make it clear how you have arrived at the mark you have awarded and all responses must have enough annotation for a reviewer to decide if the mark awarded is correct without having to mark it independently.

It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

Award NR (No Response)

- if there is nothing written at all in the answer space and no attempt elsewhere in the script
- OR if there is a comment which does not in any way relate to the question (e.g. 'can't do', 'don't know')
- OR if there is a mark (e.g. a dash, a question mark, a picture) which isn't an attempt at the question.

Note: Award 0 marks only for an attempt that earns no credit (including copying out the question).

If a candidate uses the answer space for one question to answer another, for example using the space for 8(b) to answer 8(a), then give benefit of doubt unless it is ambiguous for which part it is intended.

An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not always be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly. Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.

If you are in any doubt whatsoever you should contact your Team Leader.

c The following types of marks are available.

#### М

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

A method mark may usually be implied by a correct answer unless the question includes the DR statement, the command words "Determine" or "Show that", or some other indication that the method must be given explicitly.

#### Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

#### В

Mark for a correct result or statement independent of Method marks.

Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

- When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep\*' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. If this is not the case please, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.
  - Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.
- f We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so.
  - When a value is given in the paper only accept an answer correct to at least as many significant figures as the given value.
  - When a value is not given in the paper accept any answer that agrees with the correct value to 3 s.f. unless a different level of accuracy has been

asked for in the question, or the mark scheme specifies an acceptable range.

NB for Specification B (MEI) the rubric is not specific about the level of accuracy required, so this statement reads "2 s.f".

Follow through should be used so that only one mark in any question is lost for each distinct accuracy error.

Candidates using a value of 9.80, 9.81 or 10 for *g* should usually be penalised for any final accuracy marks which do not agree to the value found with 9.8 which is given in the rubric.

- g Rules for replaced work and multiple attempts:
  - If one attempt is clearly indicated as the one to mark, or only one is left uncrossed out, then mark that attempt and ignore the others.
  - If more than one attempt is left not crossed out, then mark the last attempt unless it only repeats part of the first attempt or is substantially less complete.
  - if a candidate crosses out all of their attempts, the assessor should attempt to mark the crossed out answer(s) as above and award marks appropriately.
- For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A or B mark in the question. Marks designated as cao may be awarded as long as there are no other errors. If a candidate corrects the misread in a later part, do not continue to follow through. Note that a miscopy of the candidate's own working is not a misread but an accuracy error.
- If a calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers, provided that there is nothing in the wording of the question specifying that analytical methods are required such as the bold "In this question you must show detailed reasoning", or the command words "Show" or "Determine". Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. If in doubt, consult your Team Leader.
- j If in any case the scheme operates with considerable unfairness consult your Team Leader.

|   | Questi | ion | Answer                                                                                                                                                                                                                                                                                            | Marks                       | AOs                        | Guidance                                                          |
|---|--------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------|-------------------------------------------------------------------|
| 1 | (a)    |     | a         b         c         d           a         b         d         a         c           b         c         a         d         b         c           d         d         c         d         d         c         d           d         d         c         d         a         All correct | B1<br>B1<br>B1<br>B1<br>[4] | 3.1a<br>1.1<br>2.2a<br>1.1 |                                                                   |
|   | (b)    |     | No – since $c$ is the "left identity" but there is no "right identity"  Or there is no identity column  Or $(ad)b = cb = b$ but $a(db) = ac = a$ so op. not associative                                                                                                                           | B1<br>[1]                   | 2.4                        | Any valid reason (vague or unsupported claims are not acceptable) |
| 2 | (a)    |     | $f_x = 4xy^7 + 15x^4y^4 - 40x^7y$ and $f_y = 14x^2y^6 + 12x^5y^3 - 5x^8$                                                                                                                                                                                                                          | M1<br>A1 A1                 | 1.1<br>1.1 1.1             | Clear attempt at partial differentiation                          |
|   |        |     | Then $x f_x + y f_y = 4x^2y^7 + 15x^5y^4 - 40x^8y + 14x^2y^7 + 12x^5y^4 - 5x^8y$                                                                                                                                                                                                                  | M1                          | 2.1                        |                                                                   |
|   |        |     | $= 18x^2y^7 + 27x^5y^4 - 45x^8y = 9 f$                                                                                                                                                                                                                                                            | A1<br>[5]                   | 1.1                        | n = 9 must be clearly stated                                      |
|   | (b)    |     | $f_{xx} = 4y^7 + 60x^3y^4 - 280x^6y$ and $f_{xy} = 28xy^6 + 60x^4y^3 - 40x^7$                                                                                                                                                                                                                     | B1 B1                       | 1.1 1.1                    |                                                                   |
|   |        |     | Then $x f_{xx} + y f_{xy} = 4xy^7 + 60x^4y^4 - 280x^7y + 28xy^7 + 60x^4y^4 - 40x^7y$                                                                                                                                                                                                              | M1                          | 2.1                        |                                                                   |
|   |        |     | $= 32xy^7 + 120x^4y^4 - 320x^7y = 8 f_x$                                                                                                                                                                                                                                                          | A1                          | 1.1                        |                                                                   |
|   |        |     | Alternative method Differentiate. (a)'s result w.r.t. $x : x f_{xx} + f_x + y f_{yx} = n f_x$ M1 A1 $f_{yx} = f_{xy} \text{ (by the Mixed Derivative Theorem) B1}$ $\Rightarrow x f_{xx} + y f_{xy} = (n-1) f_x \text{ A1}$                                                                       | [4]                         |                            |                                                                   |

| Question   |         | Answer                                                                                                                                             | Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a)        |         | $I_n + I_{n-2} = \int_0^1 \frac{x^{n-2}(1+x^2)}{1+x^2} dx = \int_0^1 x^{n-2} dx = \left[\frac{x^{n-1}}{n-1}\right]_0^1 = \frac{1}{n-1}$            | M1<br>M1<br>A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.1 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Combining as a single integral (added numerators) Factorising and cancelling AG legitimately obtained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            |         |                                                                                                                                                    | [3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>(b)</b> | (i)     | $I_0 = \frac{1}{4}\pi$                                                                                                                             | <b>B</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            |         | $I_2 = 1 - \frac{1}{4}\pi$ , $I_4 = \frac{1}{3} - I_2 = \frac{1}{4}\pi - \frac{2}{3}$ , $I_6 = \frac{1}{5} - I_4 = \frac{13}{15} - \frac{1}{4}\pi$ | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Use of the Reduction Formula repeatedly ( $\geq \times 3$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            |         | $I_8 = \frac{1}{7} - I_6 = \frac{1}{4} \pi - \frac{76}{105}, \qquad I_{10} = \frac{1}{9} - I_8 = \dots$                                            | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | All the way to $I_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            |         | or $I_{10} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{4}\pi = \frac{263}{315} - \frac{1}{4}\pi$                        | <b>A1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Correct final answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            |         |                                                                                                                                                    | [4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Confect Timal and Wel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | (ii)    | $I_{10} > 0 \implies \frac{1}{4} \pi < \frac{263}{315}$                                                                                            | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.1a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Clear statement and consequence noted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            |         | $\Rightarrow \pi < \frac{263}{315} \times 4 = \frac{1052}{315} = 3\frac{107}{315}$                                                                 | <b>A1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AG from clear demonstration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            |         |                                                                                                                                                    | [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (a)        | (i)     | $\mathbf{c} \times \mathbf{b} = -\mathbf{a}$                                                                                                       | B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            |         |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | (ii)    |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            |         | = 0                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Must be a vector zero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | (iii)   | $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{a} \cdot \mathbf{a}$                                                                    | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | ( )     | $=  \mathbf{a} ^2 = 9$                                                                                                                             | <b>A1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            |         |                                                                                                                                                    | [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (b)        | (i)     | Using $\mathbf{b} \times \mathbf{c} = \mathbf{a}$ OA is parallel to BC                                                                             | B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            |         | <b>OR</b> $OA$ is normal to the plane $OBC$                                                                                                        | [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | (ii)    | Using (a) (iii):                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            |         |                                                                                                                                                    | B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            |         |                                                                                                                                                    | [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | (a) (b) | (a) (i) (ii) (iii) (b) (i)                                                                                                                         | (a) $I_{n} + I_{n-2} = \int_{0}^{1} \frac{x^{n-2} (1+x^{2})}{1+x^{2}} dx = \int_{0}^{1} x^{n-2} dx = \left[\frac{x^{n-1}}{n-1}\right]_{0}^{1} = \frac{1}{n-1}$ (b) (i) $I_{0} = \frac{1}{4}\pi$ $I_{2} = 1 - \frac{1}{4}\pi,  I_{4} = \frac{1}{3} - I_{2} = \frac{1}{4}\pi - \frac{2}{3},  I_{6} = \frac{1}{5} - I_{4} = \frac{13}{15} - \frac{1}{4}\pi$ $I_{8} = \frac{1}{7} - I_{6} = \frac{1}{4}\pi - \frac{70}{105},  I_{10} = \frac{1}{9} - I_{8} = \dots$ or $I_{10} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{4}\pi = \frac{263}{515} - \frac{1}{4}\pi$ (ii) $I_{10} > 0 \Rightarrow \frac{1}{4}\pi < \frac{263}{315}$ $\Rightarrow \pi < \frac{263}{335} \times 4 = \frac{1052}{315} = 3\frac{107}{315}$ (a) (i) $\mathbf{c} \times \mathbf{b} = -\mathbf{a}$ (ii) $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \mathbf{a} \times \mathbf{a}$ $= 0$ (iii) $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{a} \cdot \mathbf{a}$ $=  \mathbf{a} ^{2} = 9$ (b) (i) Using $\mathbf{b} \times \mathbf{c} = \mathbf{a}  OA \text{ is parallel to } BC$ $OR  OA \text{ is normal to the plane } OBC$ | (a) $I_{n} + I_{n-2} = \int_{0}^{1} \frac{x^{n-2} (1+x^{2})}{1+x^{2}} dx = \int_{0}^{1} x^{n-2} dx = \left[\frac{x^{n-1}}{n-1}\right]_{0}^{1} = \frac{1}{n-1}$ (b) (i) $I_{0} = \frac{1}{4}\pi$ $I_{2} = 1 - \frac{1}{4}\pi,  I_{4} = \frac{1}{3} - I_{2} = \frac{1}{4}\pi - \frac{2}{3},  I_{6} = \frac{1}{5} - I_{4} = \frac{13}{15} - \frac{1}{4}\pi$ M1 $I_{8} = \frac{1}{7} - I_{6} = \frac{1}{4}\pi - \frac{76}{105},  I_{10} = \frac{1}{9} - I_{8} = \dots$ M1 $or  I_{10} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{4}\pi = \frac{263}{315} - \frac{1}{4}\pi$ A1 $(ii)  I_{10} > 0 \Rightarrow \frac{1}{4}\pi < \frac{263}{315}$ M1 $\Rightarrow \pi < \frac{263}{315} \times 4 = \frac{1052}{315} = 3\frac{107}{315}$ A1 $[2]$ (ii) $a \times (b \times c) = a \times a$ $= 0$ M1 $a \cdot (b \times c) = a \cdot a$ $=  a ^{2} = 9$ M1 A1 $[2]$ (iii) $a \cdot (b \times c) = a \cdot a$ $=  a ^{2} = 9$ M1 A1 $[2]$ (iii) $Using b \times c = a  OA \text{ is parallel to } BC$ OR OA is normal to the plane OBC  [11] (iii) $Using (a) \text{ (iii):}$ $tetrahedron OABC has volume 1.5 \text{ (cubic units)}$ OR noting that $O, A, B, C$ are not co-planar | (a) $I_n + I_{n-2} = \int_0^1 \frac{x^{n-2}(1+x^2)}{1+x^2} dx = \int_0^1 x^{n-2} dx = \left[\frac{x^{n-1}}{n-1}\right]_0^1 = \frac{1}{n-1}$ (b) $I_0 = \frac{1}{4}\pi$ $I_2 = 1 - \frac{1}{4}\pi,  I_4 = \frac{1}{3} - I_2 = \frac{1}{4}\pi - \frac{2}{3},  I_6 = \frac{1}{5} - I_4 = \frac{13}{15} - \frac{1}{4}\pi$ (b) $I_0 = \frac{1}{4}\pi$ $I_2 = 1 - \frac{1}{4}\pi,  I_4 = \frac{1}{3} - I_2 = \frac{1}{4}\pi - \frac{2}{3},  I_6 = \frac{1}{5} - I_4 = \frac{13}{15} - \frac{1}{4}\pi$ (c) $I_{10} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{4}\pi = \frac{263}{315} - \frac{1}{4}\pi$ (d) $I_{10} > 0 \Rightarrow \frac{1}{4}\pi < \frac{263}{315}$ (e) $I_{10} > 0 \Rightarrow \frac{1}{4}\pi < \frac{263}{315}$ (f) $I_{10} > 0 \Rightarrow \frac{1}{4}\pi < \frac{263}{315}$ (g) $I_{10} > 0 \Rightarrow \frac{1}{4}\pi < \frac{263}{315}$ (h) $I_{10} > 0 \Rightarrow \frac{1}{4}\pi < \frac{263}{315}$ (h) $I_{10} > 0 \Rightarrow \frac{1}{4}\pi < \frac{263}{315}$ (h) $I_{11} > 0 \Rightarrow 1 \Rightarrow$ |

|   | Quest! | ion   | Answer                                                                                                                                         | Marks      | AOs  | Guidance                                                                                                        |
|---|--------|-------|------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|-----------------------------------------------------------------------------------------------------------------|
| 5 | (a)    | (i)   | $z = \cosh x$ (catenary curve) through (0, 1), symmetrical about z-axis                                                                        | B1         | 3.4  | Penalise line extending outside $x \in [-\ln 20, \ln 20]$<br>Axes must be $x$ - and $z$ -axes and labelled thus |
|   |        |       |                                                                                                                                                | [1]        |      |                                                                                                                 |
|   |        | (ii)  | $L = \int \sqrt{1 + \left(\frac{\mathrm{d}z}{\mathrm{d}x}\right)^2}  \mathrm{d}x  \text{used with } \frac{\mathrm{d}z}{\mathrm{d}x} = \sinh x$ | M1         | 3.1b | Condone use of y instead of z                                                                                   |
|   |        |       | $= \int \sqrt{1 + \sinh^2 x}  dx  \mathbf{or}  \int \cosh x  dx  with \text{ correct limits}$                                                  | <b>A1</b>  | 1.1  | May have a factor of 2 if limits (0, ln 20) used                                                                |
|   |        |       | = $19.95$ or via $2 \sinh(\ln 20)$                                                                                                             | <b>A1</b>  | 1.1  | BC or via correct integration                                                                                   |
|   |        |       | < 20 so YES (design requirement met)                                                                                                           | A1<br>[4]  | 3.5a | From <b>cao</b> with stated conclusion                                                                          |
|   | (b)    | (i)   | $y = \frac{1}{\cosh x}$ sketched                                                                                                               | B1         | 3.4  | Allow ft for reciprocal of previous function (provided all positive)                                            |
|   |        |       | (must be through $(0, 1)$ and symmetrical about $y$ -axis)<br>Axes must be $x$ - and $y$ -axes and labelled thus                               |            |      | Condone line extending outside $x \in [-\ln 20, \ln 20]$ only if already penalised in (a) (i)                   |
|   |        |       |                                                                                                                                                | [1]        |      |                                                                                                                 |
|   |        | (ii)  | $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-\sinh x}{\cosh^2 x}$                                                                                 | <b>B</b> 1 | 1.1  | Correct derivative (with correct sign)                                                                          |
|   |        |       | $A = 2\pi \int y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$ used with y and $\frac{dy}{dx} = \dots$                                           | M1         | 1.1  |                                                                                                                 |
|   |        |       | $=2\pi \int_{-\ln 20}^{\ln 20} \frac{1}{\cosh x} \sqrt{1 + \frac{\sinh^2 x}{\cosh^4 x}}  dx$                                                   | A1         | 1.1  | Condone (incorrect sign)-squared                                                                                |
|   |        |       | Use of $\sinh^2 x = \cosh^2 x - 1$                                                                                                             | M1         | 3.1a |                                                                                                                 |
|   |        |       | $= 4\pi \int_{0}^{\ln 20} \frac{1}{\cosh^{3} x} \sqrt{\cosh^{4} x + \cosh^{2} x - 1}  dx$                                                      | A1         | 2.3  | <b>AG</b> Must show clearly how the limits give $k = 4$ and how the integrand is as shown                       |
|   |        |       |                                                                                                                                                | [5]        |      | _                                                                                                               |
|   |        | (iii) | $\int$ above (given) is $4\pi \times 1.56471033 = 19.7$                                                                                        | B1         | 1.1  | <b>BC</b> correct to $\geq 3$ s.f. (19.662 73 to 5 d.p.)                                                        |
|   |        |       | so YES (design requirement met)                                                                                                                | B1<br>[2]  | 3.5a | Cao Correct conclusion must be stated                                                                           |

|   | Questi | on | Answer                                                                    | Marks     | AOs        | Guidance                                              |
|---|--------|----|---------------------------------------------------------------------------|-----------|------------|-------------------------------------------------------|
| 6 | (a)    |    | 2, 3, 4 and 6 because these are the factors of 12 (by Lagrange's Theorem) | B1<br>B1  | 1.1<br>2.4 | Ignore 1 or 12 if they appear                         |
|   |        |    |                                                                           | [2]       |            |                                                       |
|   | (b)    |    | $\{3, 9, 27\}$                                                            | B1        | 1.1        |                                                       |
|   |        |    |                                                                           | [1]       |            |                                                       |
|   | (c)    |    | 27                                                                        | B1        | 1.1        |                                                       |
|   |        |    |                                                                           | [1]       |            |                                                       |
|   | (d)    |    | $18, 18^2 = 324 = 12 \mod (39), (18^3 = 21) \dots$                        | M1        | 1.1        | For method of searching by finding powers             |
|   |        |    | $18^4 = 12^2 = 27 \pmod{39}$ so order 4                                   | <b>A1</b> | 2.1        |                                                       |
|   |        |    |                                                                           | [2]       |            |                                                       |
|   | (e)    |    | $3 \equiv 3, 42, 81, \dots$                                               | M1        | 3.1a       | Method for searching for squares $\equiv 3 \pmod{39}$ |
|   |        |    | First square-root of 3 is 9                                               | A1        | 2.2a       |                                                       |
|   |        |    | Second square-root of 3 is $-9 \equiv 30$                                 | <b>A1</b> | 3.2a       | Cannot just state –9                                  |
|   |        |    | •                                                                         | [3]       |            |                                                       |
|   | (f)    |    | Identity 27 in G does not map to identity 1 in H                          | B1        | 2.4        | Or any clear equivalent statement                     |
|   |        |    |                                                                           | [1]       |            | -                                                     |

| ( | Question   |      | Answer                                                                        | Marks    | AOs         | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---|------------|------|-------------------------------------------------------------------------------|----------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7 | (a)        |      | By "Fermat's Little Theorem", since 5 is prime.                               | B1       | 1.2         | i.e. FLT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |            |      |                                                                               | [1]      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | <b>(b)</b> |      | If $n$ is even, then $n^5$ is also even                                       | M1       | 2.1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |            |      | If <i>n</i> is odd, then $n^5$ is also odd so that $n^5 \equiv n \pmod{2}$    | A1       | 1.1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |            |      | Since $hcf(2, 5) = 1$ it follows that $n^5 \equiv n \pmod{2 \times 5} = 10$   | A1       | 2.4         | Conclusion with supporting reason                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   |            |      |                                                                               | [3]      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | (c)        | (i)  | Need to show that $n^5 \equiv n \pmod{3}$                                     | B1       | 3.1a        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |            |      | mod3, $0^5 = 0 \equiv 0$ , $1^5 = 1 \equiv 1$ , $2^5 = 32 \equiv 2$           | M1       | 2.1         | Running through all possibilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   |            |      | $111003, 0^{3} - 0 = 0, 1^{3} - 1 = 1, 2^{3} - 32 = 2$                        | A1       | 1.1         | All noted correctly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |            |      | Because $n^5 \equiv n \pmod{10}$ , then $n^5 - n$ is divisible by 10          |          | 2.1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |            |      | Since $hcf(3, 10) = 1$ it follows that $n^5 \equiv n \pmod{3 \times 10 = 30}$ | M1<br>A1 | 3.1a<br>2.4 | Conclusion with supporting reason                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   |            |      | i.e. $n^5 - n$ is divisible by 30 $\forall n \in \mathbb{N}$                  | Ai       | 2.4         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |            |      | Alternative method                                                            | B1       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |            |      | $n^3 \equiv n \pmod{3}$ by $FLT$                                              | BI       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |            |      | Then $n^5 = n^3 \cdot n^2 = n \cdot n^2 = n^3 = n$                            | M1 A1    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |            |      | Because $n^5 \equiv n \pmod{10}$ , then $n^5 - n$ is divisible by 10          |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |            |      | Since $hcf(3, 10) = 1$ it follows that $n^5 \equiv n \pmod{3 \times 10 = 30}$ | M1       |             | Conclusion with supporting reason                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   |            |      | i.e. $n^5 - n$ is divisible by $30 \ \forall \ n \in \mathbb{N}$              | A1       |             | The second secon |
|   |            |      |                                                                               | [5]      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | (c)        | (ii) | No – since, when $n = 2$ , $n^5 - n = 30$                                     | B1       | 2.3         | Producing a counter-example                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   |            |      |                                                                               | [1]      |             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

|  | Question | Answer | Marks | AOs | Guidance |
|--|----------|--------|-------|-----|----------|
|--|----------|--------|-------|-----|----------|

| 0 |     |                                                                                                                                                     |           | I           | <u> </u>                                                                   |
|---|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|----------------------------------------------------------------------------|
| 8 | (a) | $u_1^2 - 3 = -2 < 0$ so result is true for $n = 1$                                                                                                  | B1        | 1.1         |                                                                            |
|   |     | Assume that $u_k^2 - 3 < 0$ for some $k \ge 1$                                                                                                      | M1        | 1.1         |                                                                            |
|   |     | Then $u_{k+1}^2 - 3 = \left(\frac{2u_k + 3}{u_k + 2}\right)^2 - 3$                                                                                  | M1        | 2.1         | Considering the $(k+1)$ <sup>th</sup> case                                 |
|   |     | $=\frac{(2u_k+3)^2-3(u_k+2)^2}{(u_k+2)^2}$                                                                                                          | M1        | 1.1         | Common denominator                                                         |
|   |     | $= \frac{4u_k^2 + 12u_k + 9 - 3u_k^2 - 12u_k - 12}{(u_k + 2)^2} = \frac{u_k^2 - 3}{(u_k + 2)^2} < 0$                                                | A1        | 2.2a        | Must be noted that it is negative                                          |
|   |     | Explanation that 1 <sup>st</sup> case true and $k^{th}$ case true $\Rightarrow (k+1)^{th}$ case true gives the result for all positive integers $n$ | E1        | 2.4         |                                                                            |
|   |     |                                                                                                                                                     | [6]       |             |                                                                            |
|   | (b) | $u_{n+1} - u_n = \frac{2u_n + 3}{u_n + 2} - \frac{u_n(u_n + 2)}{u_n + 2} = \frac{3 - u_n^2}{u_n + 2}$                                               | M1<br>A1  | 3.1a<br>1.1 |                                                                            |
|   |     | Explaining that $u_{n+1} > u_n$ from (a)'s result                                                                                                   | B1<br>[3] | 2.2a        |                                                                            |
|   | (c) | $\frac{3-a^2}{a+2} = 0 \Rightarrow a = \pm\sqrt{3}$                                                                                                 | M1        | 3.1a        |                                                                            |
|   |     | from <b>(b)</b> $u_{n+1} > u_n$ so $a = \sqrt{3}$                                                                                                   | A1        | 1.1         | Special Case <b>B1</b> for correct limit with invalid or missing reasoning |
|   |     |                                                                                                                                                     | [2]       |             |                                                                            |
|   | (d) | Monotonic (or strictly) increasing, convergent                                                                                                      | B1<br>[1] | 2.5         |                                                                            |

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA

#### **OCR Customer Contact Centre**

### **Education and Learning**

Telephone: 01223 553998 Facsimile: 01223 552627

Email: <a href="mailto:general.qualifications@ocr.org.uk">general.qualifications@ocr.org.uk</a>

#### www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

