

Please write clearly in	ı block capitals.		
Centre number		Candidate number	
Surname			
Forename(s)			
Candidate signature			

A-level CHEMISTRY

Paper 1 Inorganic and Physical Chemistry

Tuesday 4 June 2019

Afternoon

Time allowed: 2 hours

Materials

For this paper you must have:

- the Periodic Table/Data Sheet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do **not** write outside the box around each page or on blank pages.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9		
TOTAL		

Do not write outside the

Answer all questions in the spaces provided.

6 | 1 | Figure 1 shows an incomplete Born–Haber cycle for the formation of caesium iodide. The diagram is not to scale.

Figure 1

Table 1 gives values of some standard enthalpy changes.

Table 1

Name of enthalpy change	∆ <i>H</i> ^e / kJ mol ⁻¹
Enthalpy of atomisation of caesium	+79
First ionisation energy of caesium	+376
Electron affinity of iodine	-314
Enthalpy of lattice formation of caesium iodide	– 585
Enthalpy of formation of caesium iodide	-337

O 1 Complete **Figure 1** by writing the formulas, including state symbols, of the appropriate species on each of the two blank lines.

[2 marks]

0 1 . 2 Use **Figure 1** and the data in **Table 1** to calculate the standard enthalpy of atomisation of iodine.

[2 marks]

Standard enthalpy of atomisation of iodine _____ kJ mol⁻¹

Do not write outside the

- 0 1 . 3
- The enthalpy of lattice formation for caesium iodide in **Table 1** is a value obtained by experiment.

The value obtained by calculation using the perfect ionic model is $-582~\mathrm{kJ}\,\mathrm{mol}^{-1}$

Deduce what these values indicate about the bonding in caesium iodide.

[1 mark]

- 0 1 .
- Use data from Table 2 to show that this reaction is not feasible at 298 K

$$Csl(s) \to Cs(s) + \frac{1}{2}l_2(s)$$
 $\Delta H^{o} = +337 \text{ kJ mol}^{-1}$

Table 2

	CsI(s)	Cs(s)	l ₂ (s)
S ^e / J K ⁻¹ mol ⁻¹	130	82.8	117

[4 marks]

9

such	Do not write outside the box
2 .	
narks]	

0 2	Time of flight (TOF) mass spectrometry can be used to analyse large molecules such as the pentapeptide, leucine encephalin (P).
	P is ionised by electrospray ionisation and its mass spectrum is shown in Figure 2.
	Figure 2
	Abundance
	0 556
	m/z
0 2 . 1	Describe the process of electrospray ionisation.
	Give an equation to represent the ionisation of P in this process.
	[4 marks]
	Description
	Equation
	Equation

5		
What is the relative molecular mass of P ? Tick (✓) one box.		Do not we outside to box
	[1 mark]	
555 556 557		
A molecule $\bf Q$ is ionised by electron impact in a TOF mass spectrometer. The $\bf Q^+$ ion has a kinetic energy of 2.09 x 10^{-15} J This ion takes 1.23 x 10^{-5} s to reach the detector. The length of the flight tube is 1.50 m		
Calculate the relative molecular mass of Q .		
$KE = \frac{1}{2}mv^2$ where $m = \text{mass (kg)}$ and $v = \text{speed (m s}^{-1})$		
The Avogadro constant, $L = 6.022 \times 10^{23} \text{ mol}^{-1}$	[5 marks]	
	What is the relative molecular mass of P ? Tick (\checkmark) one box. 555 556 557 A molecule Q is ionised by electron impact in a TOF mass spectrometer. The Q ⁺ ion has a kinetic energy of 2.09 x 10 ⁻¹⁵ J This ion takes 1.23 x 10 ⁻⁵ s to reach the detector. The length of the flight tube is 1.50 m Calculate the relative molecular mass of Q . $KE = \frac{1}{2}mv^2$ where $m = \text{mass}$ (kg) and $v = \text{speed}$ (m s ⁻¹)	What is the relative molecular mass of P ? Tick (\checkmark) one box. [1 mark] 555

Relative molecular mass

Do not write
outside the
box

0 3	This question is about periodicity, the Period 4 elements and their compounds.	
0 3.1	State the meaning of the term periodicity.	[1 mark]
0 3.2	Identify the element in Period 4 with the highest electronegativity value.	[1 mark]
0 3 . 3	Identify the element in Period 4 with the largest atomic radius. Explain your answer. Element	[3 marks]
	Explanation	
0 3 . 4	The equations for two reactions of arsenic(III) oxide are shown. $\mbox{As}_2\mbox{O}_3 + 6\mbox{HCl} \rightarrow 2\mbox{AsCl}_3 + 3\mbox{H}_2\mbox{O}$	
	$\mbox{As}_2\mbox{O}_3 + 6\mbox{NaOH} \rightarrow 2\mbox{Na}_3\mbox{AsO}_3 + 3\mbox{H}_2\mbox{O}$ Name the property of arsenic(III) oxide that describes its ability to react in the ways.	ese two
0 3 . 5	Complete the equation for the formation of arsenic hydride.	[1 mark]

0 4 Figure 3 shows some reactions of aqueous iron ions. Figure 3 **Reaction 2** Reaction 1 Concentrated HCl(aq) $Na_2CO_3(aq)$ $[Fe(H_2O)_6]^{3+}$ — → Precipitate J **Solution** containing Complex ion L Reaction 3 $[Fe(H_2O)_6]^{2+}$ **Reaction 4** Concentrated NH₃(aq) Precipitate M 0 4 . 1 Give the formula of **Precipitate J** and state its colour. Give an equation for **Reaction 1**. [3 marks] Formula of **J** Colour Equation 0 4 . Give the formula of L and an equation for Reaction 2. [2 marks] Formula of **L** Equation Suggest a reagent for Reaction 3. [1 mark]

Turn over ▶

Do not write outside the

0 4.4	Give the formula of Precipitate M and state its colour. [2 marks]
	Formula of M
	Colour
0 4.5	Transition metal complexes have different shapes and many show isomerism.
	Describe the different shapes of complexes and show how they lead to different types of isomerism. Use examples of complexes of cobalt(II) and platinum(II).
	ose examples of complexes of coball(II) and platification.
	You should draw the structures of the examples chosen. [6 marks]

	Do not write outside the
	box
	14

0 5	This question is about some Group 7 compounds.
0 5.1	Solid sodium chloride reacts with concentrated sulfuric acid.
	Give an equation for this reaction. State the role of the sulfuric acid in this reaction. [2 marks]
	Equation
	Role
0 5.2	Fumes of sulfur dioxide are formed when sodium bromide reacts with concentrated sulfuric acid.
	For this reaction • give an equation • give one other observation • state the role of the sulfuric acid. [3 marks]
	Equation
	Observation
	Role
0 5.3	Chlorine reacts with hot aqueous sodium hydroxide as shown in the equation. $3Cl_2 + 6NaOH \rightarrow NaClO_3 + 5NaCl + 3H_2O$
	Give the oxidation state of chlorine in $NaClO_3$ and in $NaCl$ [1 mark]
	NaClO ₃
	NaCl

Do not write outside the box

Do not write outside the box

0 5.4	State, in terms of redox, what happens to chlorine in the reaction in Question	
		[1 mark]

0 5 Solution Y contains **two** different negative ions.

To a sample of solution \mathbf{Y} in a test tube a student adds

- · silver nitrate solution
- · then an excess of dilute nitric acid
- finally an excess of concentrated ammonia solution.

The observations after each addition are recorded in **Table 3**.

Table 3

Reagent added to solution Y	Observation
silver nitrate solution	cream precipitate containing compound D and compound E
excess dilute nitric acid	cream precipitate D and bubbles of gas F
excess concentrated ammonia solution	colourless solution containing complex ion G

Give the formulas of **D**, **E** and **F**.

Give an ionic equation to show the formation of E.

Give an equation to show the conversion of **D** into **G**.

		[6 marks]
Formula of D		
Formula of E		
Formula of F		
Ionic equation to form E		
Equation to show the con	ersion of D into G	

Turn over ▶

13

Do not v	vrite
outside	the
hov	

0 6

A student does an experiment to determine the percentage of copper in an alloy.

The student

- reacts 985 mg of the alloy with concentrated nitric acid to form a solution (all of the copper in the alloy reacts to form aqueous copper(II) ions)
- pours the solution into a volumetric flask and makes the volume up to 250 cm³ with distilled water
- · shakes the flask thoroughly
- transfers 25.0 cm³ of the solution into a conical flask and adds an excess of potassium iodide
- uses exactly 9.00 cm³ of 0.0800 mol dm⁻³ sodium thiosulfate (Na₂S₂O₃) solution to react with all the iodine produced.

The equations for the reactions are

$$2Cu^{2+} + 4I^{-} \rightarrow 2CuI + I_{2}$$

$$2S_2O_3^{2-} + I_2 \rightarrow 2I^- + S_4O_6^{2-}$$

0 6 · 1 Calculate the percentage of copper by mass in the alloy.

Give your answer to the appropriate number of significant figures.

[6 marks]

% copper _____

Do not i	vrit
outside	th
box	

0 6.2	Suggest two ways that the student could reduce the percentage uncertainty measurement of the volume of sodium thiosulfate solution, using the same apparatus as this experiment.	in the
		[2 marks]
	1	
	2	
0 6.3	State the role of iodine in the reaction with sodium thiosulfate.	[1 mark]
0 6.4	Give the full electron configuration of a copper(II) ion.	[1 mark]
0 6.5	Copper(I) iodide is a white solid.	
	Explain why copper(I) iodide is white.	[2 marks]
	Question 6 continues on the next page	

			Do not write
0 6.6	lodine vaporises easily.		outside the box
	Calculate the volume, in $\text{cm}^3,$ that 5.00 g of iodine vapour occupies at 185 $^{\circ}\text{C}$ and 100 kPa		
	The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$		
	Give your answer to 3 significant figures.	[4 marks]	
	Volume	cm ³	16

	10
0 7	Sulfur trioxide decomposes on heating to form an equilibrium mixture containing sulfur dioxide and oxygen. $2SO_3(g) \rightleftharpoons \ 2SO_2(g) + O_2(g)$
0 7.1	A sample of sulfur trioxide was heated and allowed to reach equilibrium at a given temperature. The equilibrium mixture contained 6.08 g of sulfur dioxide.
	Calculate the mass, in g, of oxygen gas in the equilibrium mixture. [2 marks]
	Mass9
	Question 7 continues on the next page

Turn over ▶

Do not write outside the box

Do not write
outside the
hox

0	7	١.	2
U	•	•	_

A different mass of sulfur trioxide was heated and allowed to reach equilibrium at 1050 $\mbox{\scriptsize K}$

$$2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$$

The amounts of each substance in the equilibrium mixture are shown in **Table 4**.

Table 4

Substance	Amount at equilibrium / mol
sulfur trioxide	0.320
sulfur dioxide	1.20
oxygen	0.600

For this reaction at 1050 K the equilibrium constant, $K_{\rm p}$ = 7.62 x 10⁵ Pa

Calculate the mole fraction of each substance at equilibrium. Give the expression for the equilibrium constant, K_p Calculate the total pressure, in Pa, of this equilibrium mixture.

[4 marks]

Mole fraction SO ₃	
Mole fraction SO ₂	
Mole fraction O ₂	
K_p	

Total pressure _____ Pa

	Do not write outside the box
ks]	
m	
ks]	
_	
	10

O 7 • **3** For this reaction at 1050 K the equilibrium constant, $K_p = 7.62 \times 10^5 \text{ Pa}$ For this reaction at 500 K the equilibrium constant, $K_p = 3.94 \times 10^4 \text{ Pa}$

Explain how this information can be used to deduce that the forward reaction is endothermic.

[2 marks]

0 7 . **4** Use data from Question **07.3** to calculate the value of K_p , at 500 K, for the equilibrium represented by this equation. Deduce the units of K_p

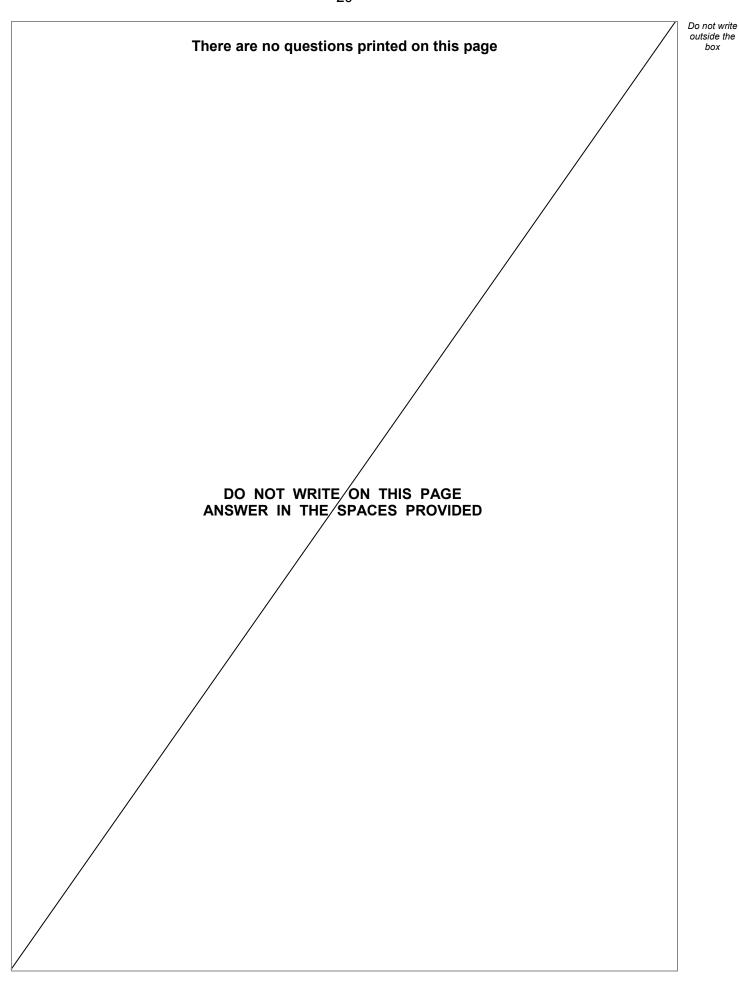
$$SO_3(g) \rightleftharpoons SO_2(g) + \frac{1}{2}O_2(g)$$

[2 marks]

Κ_p _____

Unite

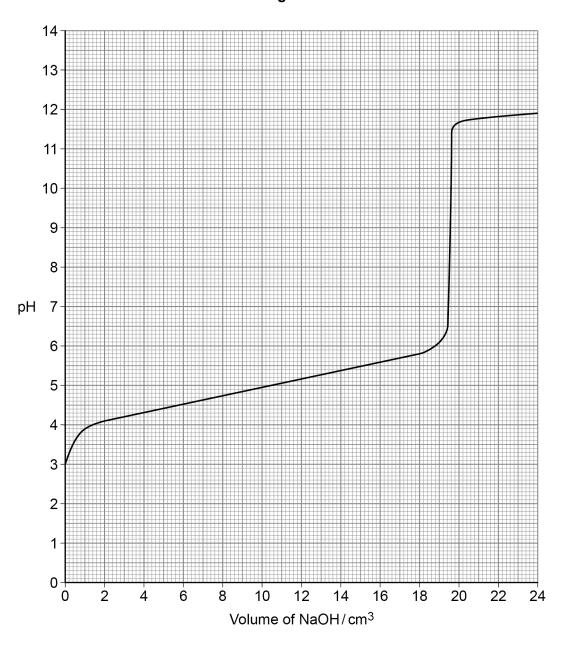
Turn over for the next question


	Do not write outside the box
of	
narks]	
ints. narks]	

0 8	This question is about structure	and bonding.	
0 8.1	Draw a diagram to show the stroethanol (C ₂ H ₅ OH) in the liquid ph	ongest type of interaction between two mhase.	olecules of
	Include all lone pairs and partial	charges in your diagram.	[3 marks]
0 8 . 2	Methoxymethane (CH ₃ OCH ₃) is	an isomer of ethanol.	
0 8.2		an isomer of ethanol. s of ethanol and methoxymethane.	
0 8.2			
0 8.2		s of ethanol and methoxymethane.	
0 8.2	Table 5 shows the boiling points	of ethanol and methoxymethane. Table 5	
0 8.2	Table 5 shows the boiling points Compound	Table 5 Boiling point / °C	
0 8.2	Compound ethanol methoxymethane	Table 5 Boiling point / °C 78	oiling points. [3 marks]
0 8.2	Compound ethanol methoxymethane	Boiling point / °C 78 -24	
0 8.2	Compound ethanol methoxymethane	Boiling point / °C 78 -24	
0 8.2	Compound ethanol methoxymethane	Boiling point / °C 78 -24	

	Extra space		Do not write outside the box
	-		
0 8.3	Draw the shape of the POCl ₃ module any lone pairs of electron	olecule and the shape of the ClF_4^- ion. ns that influence the shapes.	
	In a POCl ₃ molecule the oxygen double bond that uses two electrons	atom is attached to the phosphorus atorons from phosphorus.	om by a
	Name each shape.		
	Suggest a value for the bond an	gle in ClF ₄ -	
	Shape of POCl ₃	Shape of ClF ₄	[5 marks]
			[c mame]
	Name of shape of POCl ₃		
	Name of shape of ClF ₄		
	Bond angle in ClF ₄ ⁻		11
	Turn over fo	or the next question	

0 9	This question is about different pH values.	Do not write outside the box
0 9.1	For pure water at 40 °C, pH = 6.67 A student thought that the water was acidic.	
	Explain why the student was incorrect.	
	Determine the value of K_w at this temperature. [4 marks]	
	Explanation	
	\mathcal{K}_{w} mol ² dm ⁻⁶	
	Question 9 continues on the next page	


Do not write outside the box

0 9 . 2 Sodium hydroxide solution was added gradually from a burette to 25 cm³ of 0.080 mol dm⁻³ propanoic acid at 25 °C

The pH was measured and recorded at regular intervals.

The results are shown in Figure 4.

Figure 4

I	Do	not	writ	te
	ou	tside	e th	е
		ho	~	

Use Figure 4 to determine the value of K_a for propanoic acid at 25 °C
Show your working.

[3 marks]

<i>K</i> _a	mol dm ⁻³

0 9. **3** Suggest which indicator is the most appropriate for the reaction in Question **09.2**? Tick (✓) **one** box.

[1 mark]

Indicator	pH range	Tick (✓) one box
methyl orange	3.1 – 4.4	
bromothymol blue	6.0 – 7.6	
cresolphthalein	8.2 – 9.8	
indigo carmine	11.6 – 13.0	

Question 9 continues on the next page

Do not write outside the

0 9 . 4	A student prepared a buffer solution by adding 0.0136 mol of a salt KX to
	100 cm ³ of a 0.500 mol dm ⁻³ solution of a weak acid HX and mixing thoroughly.

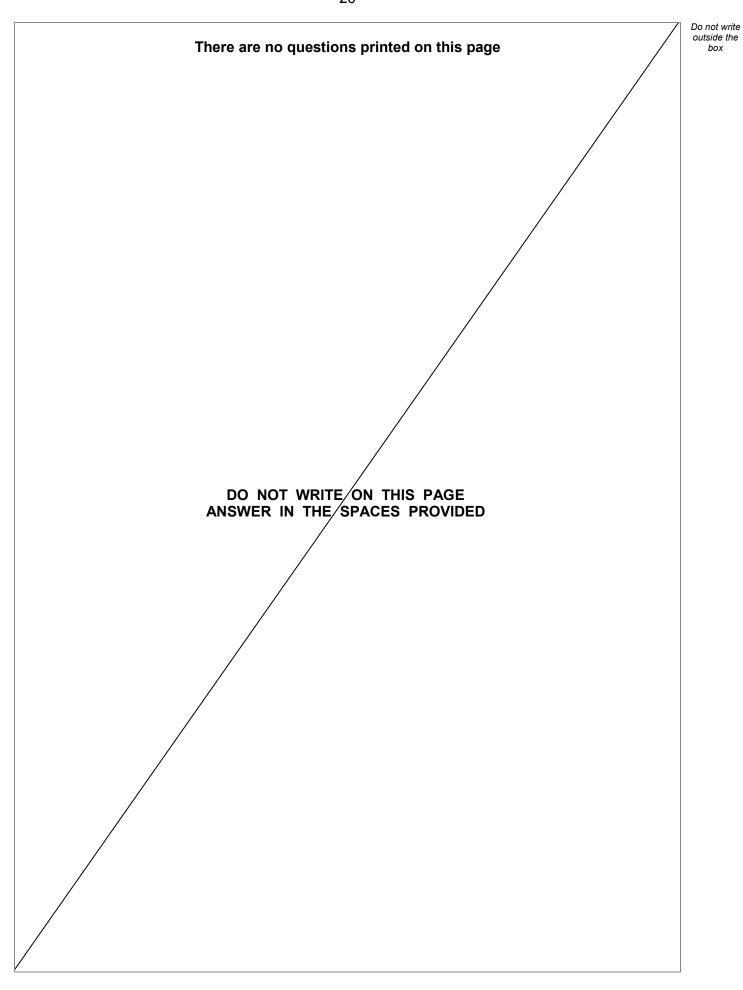
The student then added 3.00 \times 10⁻⁴ mol of potassium hydroxide to the buffer solution.

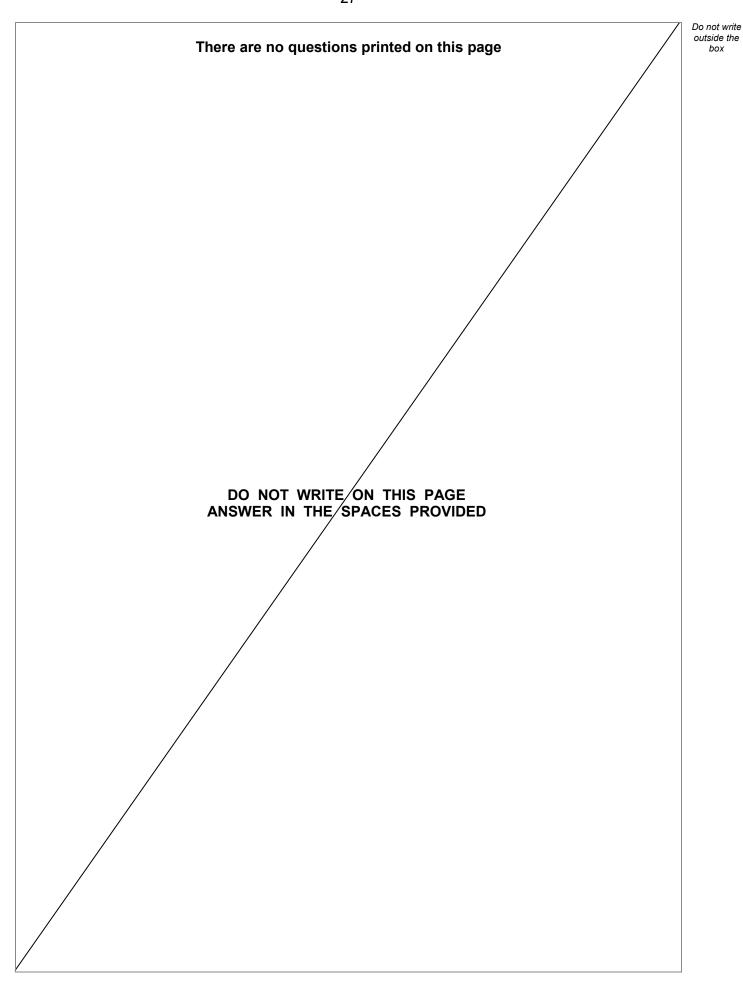
Calculate the pH of the buffer solution after adding the potassium hydroxide.

For the weak acid HX at 25 °C the value of the acid dissociation constant, $K_a = 1.41 \times 10^{-5} \, \text{mol dm}^{-3}$.

Give your answer to two decimal places.

[6 marks]


nH


25 Do not write outside the 0 9 . 5 A buffer solution has a constant pH even when diluted. Use a mathematical expression to explain this. [1 mark] **END OF QUESTIONS**

15

There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third-party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2019 AQA and its licensors. All rights reserved.

IB/G/Jun19/7405/1

Do not write outside the