

Monday 20 May 2019 – Morning AS Level Chemistry B (Salters)

H033/01 Foundations of chemistry

Time allowed: 1 hour 30 minutes

You must have:

 the Data Sheet for Chemistry B (Salters) (sent with general stationery)

You may use:

• a scientific or graphical calculator

Please write clearly in black ink. Do not write in the barcodes .									
Centre number						Candidate number			
First name(s)									
Last name									

INSTRUCTIONS

- · Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer all the questions.
- Where appropriate, your answers should be supported with working. Marks may be given for a correct method even if the answer is incorrect.
- Write your answer to each question in the space provided. If additional space is required, use the lined page(s) at the end of this booklet. The question number(s) must be clearly shown.

INFORMATION

- The total mark for this paper is **70**.
- The marks for each question are shown in brackets [].
- This document consists of 24 pages.

2

SECTION A

You should spend a maximum of 25 minutes on this section.

Answer **all** the questions.

Write your answer to each question in the box provided.

1	Wh	at is the outer subshell electron configuration of an element in Group 16 of the Periodic Ta	ble?
	Α	p^4	
	В	p ⁵	
	С	p ⁶	
	D	p ¹⁶	
	Υοι	ur answer	[1]
2	Gei	iger and Marsden fired α -particles at a gold foil. What happened in their experiment?	
	Α	The α -particles were scattered randomly.	
	В	Most α -particles passed through undeflected.	
	С	Many α -particles bounced back.	
	D	No α -particles were deflected.	
	Υοι	ur answer	[1]
3	Wh	ich molecule has no lone pairs?	
	Α	$\mathrm{BeC}\mathit{l}_2$	
	В	CF ₄	
	С	NH ₃	
	D	BH_3	
	You	ur answer	[1]

4	What is the volume (in cm ³) of 4.4g of CO ₂ at RTP?						
	Α	105.6					
	В	2.4×10^3					
	С	2.4×10^4					
	D	105600					
	You	r answer	[1]				
5	Whi	ch reaction will give CH ₃ CH ₂ CH(OH)CH ₂ CH ₃ as a product?					
	Α	Reduction of CH ₃ CH ₂ CH ₂ CH ₂ CHO					
	В	Treatment of CH ₂ =CHCH ₂ CH ₂ CH ₃ with conc sulfuric acid followed by water					
	С	Heating $\mathrm{CH_3CH_2CH=CH_2}$ with steam and phosphoric acid under pressure					
	D	Treatment of CH ₃ CH=CHCH ₂ CH ₃ with conc sulfuric acid followed by water					
	You	r answer	[1]				
6	Whi	ch statement about the reaction RC l + NH $_3 \rightarrow$ RNH $_2$ + HC l is correct?					
	Α	An amine is formed.					
	В	RC1 is acting as an acid.					
	С	The reaction is electrophilic substitution.					
	D	An amide is formed.					
	You	r answer	[1]				

4

7	The	e mass spectrum of ethanoic acid has a peak at m/z 45. Which species could cause this?	
	Α	CH ₃ COOH ⁺	
	В	COOH+	
	С	¹³ CH ₃ COOH ⁺	
	D	CH ₃ ⁺	
	You	ar answer	[1]
8	Wh	at is formed at the cathode when aqueous aluminium sulfate is electrolysed?	
	Α	Hydrogen	
	В	Oxygen	
	С	Aluminium	
	D	Sulfur dioxide	
	You	ar answer	[1]
9	Wh	ich term correctly describes cyclohexane?	
	Α	Arene	
	В	Alkene	
	С	Aliphatic	
	D	Unsaturated	
	You	ar answer	[1]

10	Urea	has	formula	CO(NH ₂)	ე.
----	------	-----	---------	----------------------	----

What is the percentage of nitrogen by mass in urea?

- **A** 23%
- **B** 25%
- C 41%
- **D** 47%

Your answer		[1]
-------------	--	-----

- **11** What is a property of solid iodine?
 - A It is very soluble in water.
 - **B** It is purple in colour.
 - **C** It dissolves in organic solvents.
 - **D** It melts when heated at room pressure.

Your answer			[1]
-------------	--	--	-----

12 Silver nitrate solution is added to solutions of sodium halides.

Which row is correct?

	Halide	Precipitate formed with silver nitrate
Α	chloride	white, insoluble in ammonia
В	iodide	cream, insoluble in ammonia
С	chloride	cream, soluble in ammonia
D	iodide	yellow, insoluble in ammonia

Your answer		[1]
-------------	--	-----

13	What is the action (if any) of concentrated sulfuric acid on HBr?						
	Α	No reaction					
	В	Forms SO ₂					
	С	Forms H ₂ S					
	D	Forms sulfur					
	You	r answer	[1]				
14	Whi bon	ch molecule forms permanent dipole – permanent dipole bonds as its strongest intermolec d?	ular				
	Α	CH ₃ CHO					
	В	CH ₃ COOH					
	С	CCl ₄					
	D	CO ₂					
	You	r answer	[1]				
15	A st	udent says that bio-ethanol is carbon neutral.					
	Whi	ch option provides evidence that disagrees with the student's statement about bio-ethanol	?				
	Α	It gives off carbon dioxide when it burns.					
	В	It is made from crops that absorb carbon dioxide.					
	С	Energy from conventional power-stations is used to make it.					
	D	Valuable land is used up growing the crops used to make bio-ethanol.					
	You	r answer	[1]				

16	Which substance cannot be made in a single step from C ₂ H ₄ ?						
	Α	C ₂ H ₅ OH					
	В	C ₂ H ₅ Br					
	С	C_2H_6					
	D	$C_2H_5NH_2$					
	You	er answer	[1]				
17	Whi	ich substance will not give 3-methylpentane when reduced with hydrogen?					
	A	2-ethylbut-1-ene					
	В	3-methylpent-2-ene					
	С	2-methylpent-1-ene					
	D	3-methylpent-1-ene					
	You	r answer	[1]				
18	Wha	at is not a reaction of 2-methylpropan-2-ol?					
	A	Reaction with an acid anhydride to form an ester					
	В	Oxidation to a ketone					
	С	Dehydration to an alkene					
	D	Reaction with HCl to form a haloalkane					
	You	er answer	[1]				

- 19 Which statement about instantaneous dipole induced dipole bonds is correct?
 - A They become weaker with increasing chain length of an organic compound.
 - **B** They become stronger with increased branching in organic compounds.
 - **C** They occur between molecules rather than atoms in molecules.
 - **D** In any molecule they are always the weakest intermolecular bond.

Your answer [1]

- 20 Which of the following is a redox reaction?
 - **A** $2\text{Na} + 2\text{H}_2\text{O} \rightarrow 2\text{NaOH} + \text{H}_2$
 - **B** $2CrO_4^{2-} + 2H^+ \rightarrow Cr_2O_7^{2-} + H_2O$
 - **C** $CaCO_3 + 2HCl \rightarrow CaCl_2 + H_2O$
 - $\mathbf{D} \quad \mathrm{MgCO_3} \rightarrow \mathrm{MgO} \, + \, \mathrm{CO_2}$

Your answer [1]

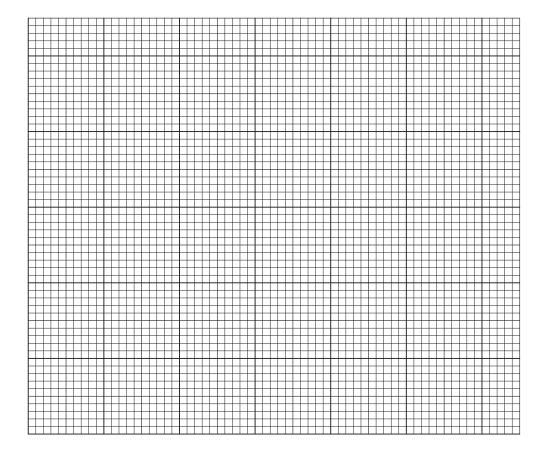
9 BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

10 SECTION B

Answer all the questions.

21 Ammonia is an important chemical used to make fertilisers. It is made in industry by the following equilibrium reaction.


N ₂ (9	g) + $3H_2(g) \rightleftharpoons 2NH_3(g)$	$\Delta_{\rm r}H^{\Theta} = -92{\rm kJmol^{-1}}$	Equation 1.1
(a)	Write down the value of $\Delta_{\rm f}H^{\rm e}$	for NH ₃ (g).	
	Include the unit in your answ	er.	
			[1]
(b)	State what is happening to reached.	the forward and reverse read	ctions once equilibrium has been
			[1]

(c) The data in the **Table 21.1** shows the equilibrium percentages of ammonia formed under different conditions of temperature and pressure in the presence of an iron catalyst.

	Temperature/K	
	473	673
Pressure/atm	Equilibrium atm percentages of ammonia	
10	50.7	3.9
25	63.6	8.7
50	74.0	15.3
100	81.7	25.2
200	89.0	38.8
400	94.6	55.4
1000	98.3	79.8

Table 21.1

(i) On the graph paper below plot the results in Table 21.1 and draw lines of best fit.

(ii)	How would the plot for 673 K be different if the iron catalyst had not been used?	
	Explain your answer.	
		[2
(iii)	Explain why the yield is greater at higher pressures.	
		[1]

[3]

	(IV)	pressure above 400 atmospheres.		
		Discuss the student's statement, giving reasons.		
			[2]	
		$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) \qquad \Delta_r H^{\Theta} = -92 \text{ kJ mol}^{-1}$ Equation 1.1		
	(v)	Ammonia is not often made at temperatures below 473 K. This is because the is established too slowly at lower temperatures.	equilibrium	
		Explain why the rate of a reaction increases with temperature.		
			[2]	
d)	The	The equilibrium shown in equation 1.1 is set up.		
	The	The data below shows the composition of an equilibrium mixture at 473 K.		
			3	

Equilibrium component	Equilibrium concentration/mol dm ⁻³
hydrogen	0.128
nitrogen	0.0403
ammonia	0.00271

Calculate the value of $K_{\rm c}$ for the reaction in **equation 1.1** at 473 K.

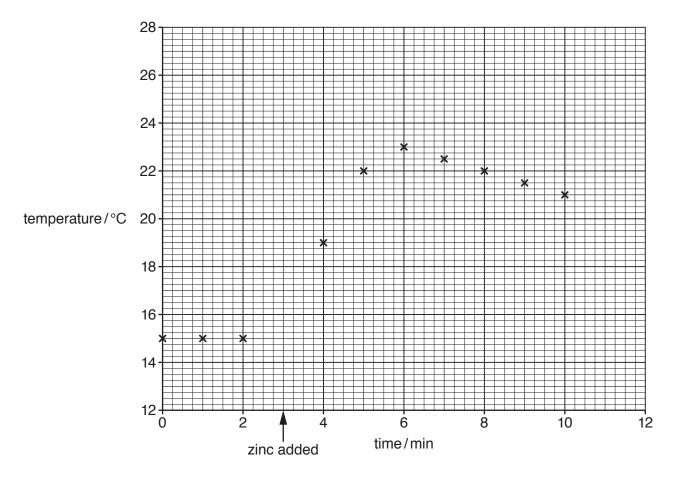
value of
$$K_c$$
 =[2]

22	with	оху	exide, BaO, was once used to make oxygen gas. When heated above 500° C, it combines gen from the air to form barium peroxide, BaO_2 . Above 700° C, BaO_2 decomposes to give exide and pure oxygen.
	2Ba	O +	$O_2 \rightleftharpoons 2BaO_2$
	The	rem	oval of CO ₂ from the air enabled the cycle to be carried out many times.
	(a)	Sug	gest why the removal of carbon dioxide was necessary.
			[1]
	(b)	Bar	ium oxide is made by heating barium carbonate.
		BaC	$\mathrm{CO_3} \rightarrow \mathrm{BaO} + \mathrm{CO_2}$
		(i)	How does the thermal stability of barium carbonate compare with the thermal stability of calcium carbonate?
			Explain your answer.
			[4]
		(ii)	Why is it valid to compare barium carbonate with calcium carbonate?

.....[1]

Bari	ium oxide dissolves in water to form barium hydroxide, Ba(OH) ₂ .		
In a titration 25.0 cm 3 of a solution of Ba(OH) $_2$ reacts with 23.6 cm 3 of 0.120 mol dm $^{-3}$ HC l .			
(i)	Write the equation for the reaction in the titration.		
(ii)	[1] Calculate the concentration of $\mathrm{Ba(OH)}_2$ in $\mathrm{moldm^{-3}}.$		
	concentration = moldm ⁻³ [2]		
(iii)	Calculate the concentration of Ba(OH) ₂ in g dm ⁻³ .		
	concentration = g dm ⁻³ [1]		
	In a		

- When ammonium nitrate, NH_4NO_3 , dissolves in water, the process is endothermic. This process is used in 'ice packs' that are used for sports injuries.
 - (a) A group of students dissolve 8.0 g of ammonium nitrate in 200 cm³ of water. The temperature falls by 3.0 °C.
 - (i) Calculate the enthalpy change on dissolving 1 mol of ammonium nitrate in water.


Give your answer in kJ mol⁻¹ and to an **appropriate** number of significant figures.

(ii)	The students want to get a larger temperature change. Some suggest using a greate mass of ammonium nitrate, others suggest using more water.
	Evaluate the students' suggestions.
	ro

 $\Delta H = \text{kJ mol}^{-1}$ [3]

(b)	Another group of students investigates the exothermic reaction between zinc and coppe sulfate solution.		
$Zn(s) + CuSO_4(aq, 0.2 mol dm^{-3}) \rightarrow Cu(s) + ZnSO_4(aq)$			
	(i)	The students are provided with powdered zinc metal and solid $CuSO_4$ •5 H_2O (M_r = 250).	
		They measure the temperature rise when $100\mathrm{cm^3}$ (an excess) of $0.2\mathrm{moldm^{-3}}$ copper sulfate is used.	
		Design a suitable method to investigate this exothermic reaction.	

(ii) The students repeat the experiment, measuring the temperature at different times. They plot the graph shown.

Use the graph to make an accurate measure of the temperature rise. Show your working on the graph.

temperature rise =°C [2]

© OCR 2019

24 Willow bark contains salicin. Salicylic acid is obtained from willow bark by first hydrolysing the salicin to salicyl alcohol, which is a solid at room temperature.

The structures of salicylic acid and salicyl alcohol are shown in Fig. 24.1.

Fig. 24.1

		_	
(a)	Nan	ne the two types of hydroxyl group that are present in salicyl alcohol.	
	1		
	2		
(b)	Sug	gest laboratory reagents and conditions for converting salicyl alcohol to salicylic acid.	[2]
	Rea	igents	
	Cor	ditions	
			[2]
(c)		ne students have an impure sample of salicyl alcohol. They wish to purify it ystallisation from water.	by
	(i)	Give the first step in the recrystallisation process.	
			[2]
	(ii)	How would the students show that their recrystallised product was purer than the imposample?	ure
			[1]

(d)	The students make some predictions about salicyl alcohol.		
	The	y predict that salicyl alcohol will fizz with sodium carbonate solution.	
		y also predict that salicyl alcohol will dehydrate when heated over ${\rm A}\it{l}_2{\rm O}_3$ to give a stance that will decolourise bromine water.	
	Con	nment on their predictions, giving chemical explanations.	
		[3]	
(e)	(i)	When salicyl alcohol reacts with concentrated hydrochloric acid, only one -OH group reacts.	
		Write the formula of the product formed.	
		[1]	
	(ii)	Salicyl alcohol reacts with ethanoic acid in the presence of concentrated sulfuric acid.	
		Draw the skeletal formula of the product formed.	

(f) The boiling point of salicylaldehyde is 197°C and the boiling point of salicyl alcohol is 267°C.
The structures of salicylaldehyde and salicyl alcohol are shown in Fig. 24.2.

Fig. 24.2

Explain the difference in boiling points between salicylaldehyde and salicyl alcohol in terms of intermolecular bonds.

[2]

21 ADDITIONAL ANSWER SPACE

If additional must be cle	space is required, you should use the following lined page(s). The question number(s arly shown in the margin(s).

	,
• • • • • • • • • • • • • • • • • • • •	
	· · · · · · · · · · · · · · · · · · ·

 ,	 	
 <u> </u>	 	

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.