

Please write clearly in block capit		
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature		

AS **MATHEMATICS**

Paper 1

Wednesday 16 May 2018

Morning

Time allowed: 1 hour 30 minutes

Materials

- You must have the AQA Formulae for A-level Mathematics booklet.
- You should have a graphical or scientific calculator that meets the requirements of the specification.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question.
 If you require extra space, use an AQA supplementary answer book; do not use the space provided for a different question.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
TOTAL		

Section A

Answer all questions in the spaces provided.

1 Three of the following points lie on the same straight line.

Which point does not lie on this line?

Tick one box.

[1 mark]

$$(-2, 14)$$

$$(-1, 8)$$

$$(1, -1)$$

$$(2, -6)$$

2 A circle has equation $(x-2)^2 + (y+3)^2 = 13$

Find the gradient of the tangent to this circle at the origin.

Circle your answer.

[1 mark]

$$-\frac{3}{2}$$

$$-\frac{2}{3}$$

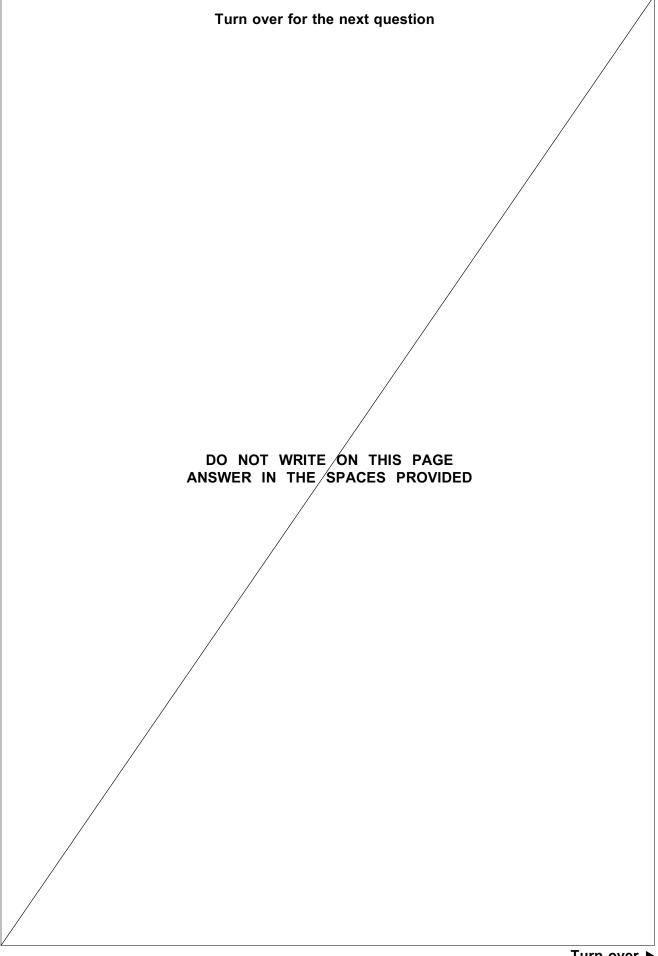
$$\frac{3}{2}$$

3	State the interval for which $\sin x$ is a decreasing function for $0^{\circ} \le x \le 360^{\circ}$	[2 marks]
	Turn over for the next question	

4 (a)	Find the first three terms in the expansion of $(1-3x)^4$ in ascending power	s of x.
		[3 marks]
4 (b)	Using your expansion, approximate (0.994) ⁴ to six decimal places.	[2 marks]

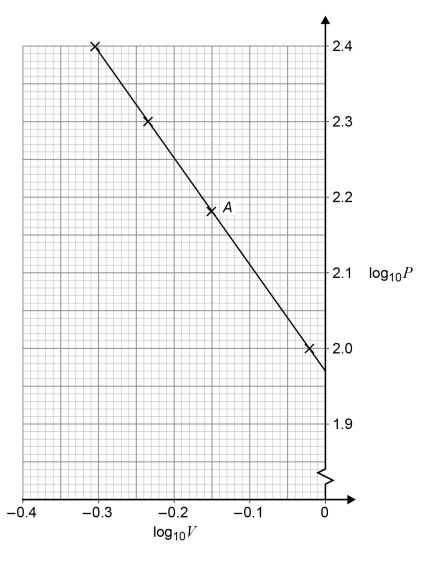
5	Point C has coordinates $(c, 2)$ and point D has coordinates $(6, d)$.			
	The line $y + 4x = 11$ is the perpendicular bisector of <i>CD</i> .			
	Find c and d .	[5 marks]		

ABC is a right-angled triangle.	
A B	
D is the point on hypotenuse AC such that $AD = AB$.	
The area of ΔABD is equal to half that of ΔABC .	
Show that $\tan A = 2 \sin A$	[4 marks]
	D is the point on hypotenuse AC such that $AD=AB$. The area of ΔABD is equal to half that of ΔABC .



6 (b) (i)	Show that the equation given in part (a) has two solutions for $0^{\circ}\!\leq A \leq 90^{\circ}$	[2 marks]
6 (b) (ii)	State the solution which is appropriate in this context.	[1 mark]
	Turn over for the next question	

7	Prove that		
		n is a prime number greater than $5 \Rightarrow n^4$ has final digit 1	[5 marks]


8 Maxine measures the pressure, P kilopascals, and the volume, V litres, in a fixed quantity of gas.

Maxine believes that the pressure and volume are connected by the equation

$$P = cV^d$$

where c and d are constants.

Using four experimental results, Maxine plots $\log_{10}P$ against $\log_{10}V$, as shown in the graph below.

8 (a) Find the value of P and the value of V for the data point labelled A on the graph. [2 marks]

3 (b)	Calculate the value of each of the constants \boldsymbol{c} and \boldsymbol{d} .	[4 marks
(c)	Estimate the pressure of the gas when the volume is 2 litres.	
		[2 marks

9	Craig is investigating the gradient of chords of the curve with equation $f(x) = x - x^2$
	Each chord joins the point $(3, -6)$ to the point $(3 + h, f(3 + h))$
	The table shows some of Craig's results.

X	f(x)	h	x + h	f(x + h)	Gradient
3	-6	1	4	-12	-6
3	-6	0.1	3.1	-6.51	-5.1
3	-6	0.01			
3	-6	0.001			
3	-6	0.0001			

Show how the value -5.1 has been calculated.	[1 mark]
Complete the third row of the table above.	[2 marks]

9 (c)	State the limit suggested by Craig's investigation for the gradient of these chords as a tends to 0 [1 mark
	į i man
(d)	Using differentiation from first principles, verify that your result in part (c) is correct. [4 mark]

A curve has equation $y = 2x^2 - 8x\sqrt{x} + 8x + 1$ for $x \ge 0$	
Prove that the curve has a maximum point at (1, 3)	
Fully justify your answer.	[9 ma

10 (b)	Find the coordinates of the other stationary point of the curve and state its nature. [2 marks]
	Turn over for Section B

Section B

Answer all questions in the spaces provided.

In this question use $g=9.8\,\mathrm{m\,s^{-2}}$ 11

A ball, initially at rest, is dropped from a height of 40 m above the ground.

Calculate the speed of the ball when it reaches the ground.

Circle your answer.

[1 mark]

$$-28\,{\rm m\,s^{-1}}$$

$$28 \, \text{m s}^{-1}$$

$$-28 \,\mathrm{m \, s^{-1}}$$
 $28 \,\mathrm{m \, s^{-1}}$ $-780 \,\mathrm{m \, s^{-1}}$ $780 \,\mathrm{m \, s^{-1}}$

12 An object of mass 5 kg is moving in a straight line.

> As a result of experiencing a forward force of F newtons and a resistant force of R newtons it accelerates at 0.6 m s⁻²

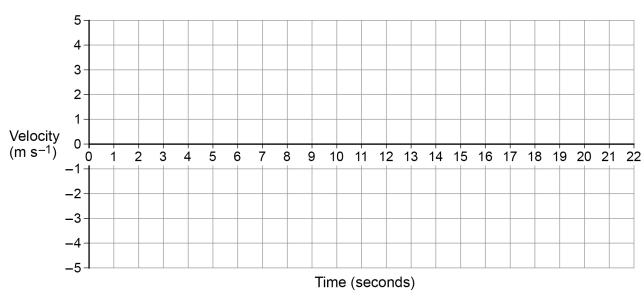
Which one of the following equations is correct?

Circle your answer.

[1 mark]

$$F - R = 0$$

$$F - R = 5$$

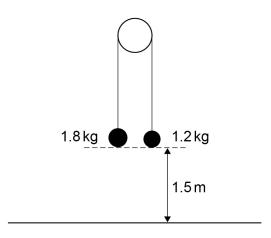

$$F - R = 3$$

$$F - R = 0$$
 $F - R = 5$ $F - R = 3$ $F - R = 0.6$

13	A vehicle, which begins at rest at point <i>P</i> , is travelling in a straight line.
	For the first 4 seconds the vehicle moves with a constant acceleration of $0.75\mbox{m}\mbox{s}^{-2}$
	For the next 5 seconds the vehicle moves with a constant acceleration of $-1.2\mathrm{ms^{-2}}$
	The vehicle then immediately stops accelerating, and travels a further 33 m at constant speed.

13 (a) Draw a velocity–time graph for this journey on the grid below.

[3 marks]



13 (b)	Find the distance of the car from <i>P</i> after 20 seconds.	[3 marks]

14 In this question use $g = 9.81 \,\mathrm{m\,s^{-2}}$

Two particles, of mass 1.8 kg and 1.2 kg, are connected by a light, inextensible string over a smooth peg.

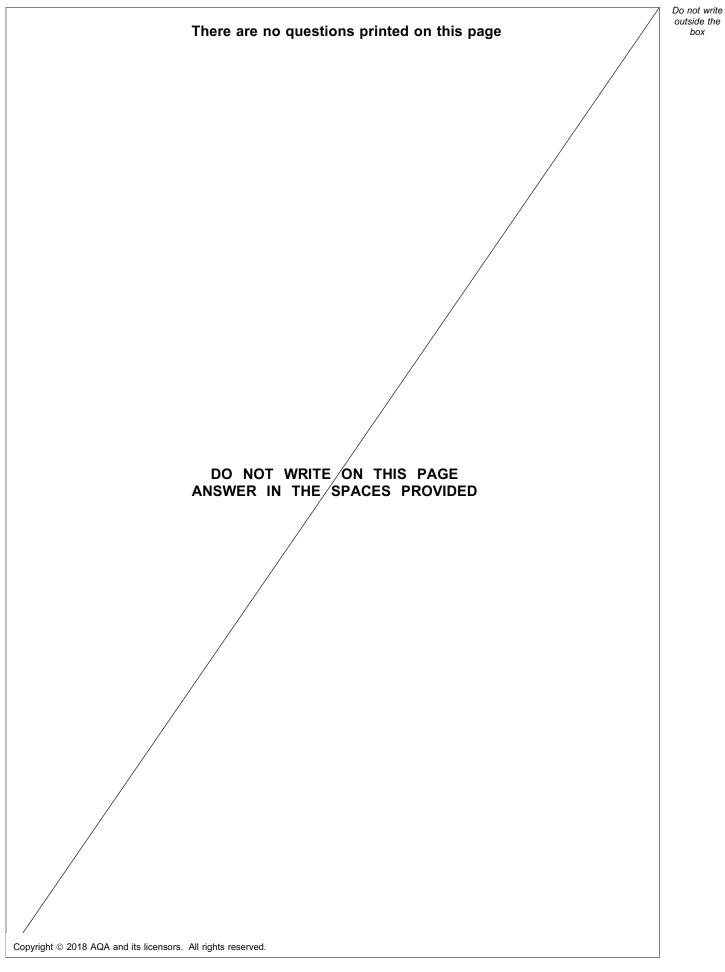
14 (a) Initially the particles are held at rest 1.5 m above horizontal ground and the string between them is taut.

The particles are released from rest.

Find the time taken for the 1.8 kg particle to reach the ground.	[5 marks]

14 (b)	State one assumption you have made in answering part (a).	[1 mark]
	Turn over for the next question	

15	A cyclist, Laura, is travelling in a straight line on a horizontal road at a constant speed of $25\mathrm{km}h^{-1}$
	A second cyclist, Jason, is riding closely and directly behind Laura. He is also moving with a constant speed of 25 km h^{-1}
15 (a)	The driving force applied by Jason is likely to be less than the driving force applied by Laura.
	Explain why. [1 mark]
15 (b)	Jason has a problem and stops, but Laura continues at the same constant speed.
	Laura sees an accident 40 m ahead, so she stops pedalling and applies the brakes.
	She experiences a total resistance force of 40 N
	Laura and her cycle have a combined mass of 64 kg
15 (b) (i)	Determine whether Laura stops before reaching the accident.
	Fully justify your answer. [4 marks]


15 (b) (ii)	State one assumption you have made that could affect your answer to part (b)(i). [1 mark]
	Turn over for the next question

16	A remote-controlled toy car is moving over a horizontal surface. It moves in a straight line through a point <i>A</i> .
	The toy is initially at the point with displacement 3 metres from A . Its velocity, $v \text{m} \text{s}^{-1}$, at time t seconds is defined by
	$v = 0.06(2 + t - t^2)$
16 (a)	Find an expression for the displacement, r metres, of the toy from A at time t seconds.
	[4 marks]

16 (b)	In this question use $g=9.8\mathrm{ms^{-2}}$	
	At time $t=2$ seconds, the toy launches a ball which travels directly upwards with initial speed $3.43\mathrm{ms^{-1}}$	
	Find the time taken for the ball to reach its highest point. [3 marks]	
	END OF QUESTIONS	

