

Please write clearly in	plock capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	

A-level **MATHEMATICS**

Paper 1

Wednesday 6 June 2018

Morning

Time allowed: 2 hours

Materials

- You must have the AQA Formulae for A-level Mathematics booklet.
- You should have a graphical or scientific calculator that meets the requirements of the specification.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question.
 If you require extra space, use an AQA supplementary answer book; do not use the space provided for a different question.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 100.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

For Exam	For Examiner's Use	
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
TOTAL		

Answer all questions in the spaces provided.

 $y = \frac{1}{x^2}$ 1

Find an expression for $\frac{dy}{dx}$

Circle your answer.

[1 mark]

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{0}{2x}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x^{-2}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{2}{x}$$

$$\frac{dy}{dx} = \frac{0}{2x} \qquad \qquad \frac{dy}{dx} = x^{-2} \qquad \qquad \frac{dy}{dx} = -\frac{2}{x} \qquad \qquad \frac{dy}{dx} = -\frac{2}{x^3}$$

The graph of $y = 5^x$ is transformed by a stretch in the y-direction, scale factor 5 2 State the equation of the transformed graph.

Circle your answer.

[1 mark]

$$y = 5 \times 5^3$$

$$y = 5^{\frac{x}{5}}$$

$$y = 5 \times 5^{x}$$
 $y = 5^{\frac{x}{5}}$ $y = \frac{1}{5} \times 5^{x}$ $y = 5^{5x}$

$$y=5^{5x}$$

Ľ	00	not	wri	t
(วน	tside	e th	ϵ
		bo.	X	

3	A periodic sequenc	A periodic sequence is defined by $U_n = \sin\left(\frac{n\pi}{2}\right)$			
	State the period of	this sequence.			
	Circle your answer			-4	
				[1 mark]	
	8	2π	4	π	
4	The function f is de	efined by $f(x) = e^{x-4}$, x	$c \in \mathbb{R}$		
	Find $f^{-1}(x)$ and sta	ate its domain.		[3 marks]	

Turn over for the next question

5	A curve is defined by the parametric equations	
	$x = 4 \times 2^{-t} + 3$	
	$y = 3 \times 2^t - 5$	
5 (a)	Show that $\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{3}{4} \times 2^{2t}$	[3 marks]
5 (b)	Find the Cartesian equation of the curve in the form $xy + ax + by = c$, who	ere a, b
	and c are integers.	[3 marks]

6 (a)		Find the first three terms, in ascending powers of x , of the binomial expansion			
	of $\frac{1}{\sqrt{4+x}}$	[3 marks]			
S (b)	Honon find the first three terms of the binomial expansion of				
6 (b)	Hence, find the first three terms of the binomial expansion of $\frac{1}{\sqrt{4-x^3}}$	[2 marks			
	Question 6 continues on the next page				

6 (c)	Using your answer to part (b) , find an approximation for $\int_0^1 \frac{1}{\sqrt{4-x^3}} dx$, giving answer to seven decimal places.	g your
		[3 marks]
6 (d) (i)	Edward, a student, decides to use this method to find a more accurate value integral by increasing the number of terms of the binomial expansion used.	for the
	Explain clearly whether Edward's approximation will be an overestimate, an underestimate, or if it is impossible to tell.	
		2 marks]

L	О	not	write
•	ou	tside	e the

6 (d) (ii)	(ii) Edward goes on to use the expansion from part (b) to find an approximation for $\int_{-2}^{0} \frac{1}{\sqrt{4-x^3}} dx$	
	Explain why Edward's approximation is invalid.	2 marks]

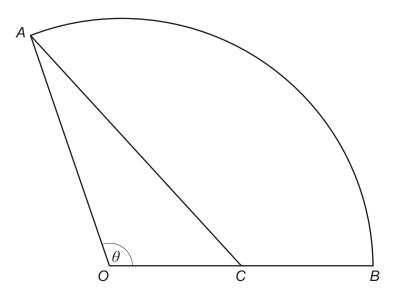
Turn over for the next question

Turn over ▶

Do	not	writ
ou		e the

7	Three points A, B and C have coordinates A (8, 17), B (15, 10) and C (-2	, -7)
7 (a)	Show that angle ABC is a right angle.	[3 marks]
7 (b)	A, B and C lie on a circle.	
7 (b) (i)	Explain why AC is a diameter of the circle.	[1 mark]

	Ŭ
7 (b) (ii)	Determine whether the point D (-8 , -2) lies inside the circle, on the circle or outside the circle.
	Fully justify your answer.
	[4 marks]
	·
	Turn over for the next question
	Talli otol isi ilio noki quosiisii



Do	not	write
ou	tside	the
	ho	~

8 The diagram shows a sec	tor of a circle OAB.
---------------------------	----------------------

 ${\it C}$ is the midpoint of ${\it OB}$.

Angle AOB is θ radians.

8 (a)	Given that the area of the triangle OAC is equal to one quarter of the area of the
	sector <i>OAB</i> , show that $\theta = 2\sin\theta$

[4 marks]

8 (b)	Use the Newton-Raphson method with $\theta_1=\pi$, to find θ_3 as an approximation for $\theta.$ Give your answer correct to five decimal places.
8 (c)	Given that $\theta=$ 1.89549 to five decimal places, find an estimate for the percentage error in the approximation found in part (b) . [1 mark]
	Turn over for the next question

9	An arithmetic sequence has first term a and common difference d .	
	The sum of the first 36 terms of the sequence is equal to the square of the sum of the first 6 terms.	
9 (a)	Show that $4a + 70d = 4a^2 + 20ad + 25d^2$ [4 marks]	

	Do not write
a. rks]	outside the box

9 (b)	Given that the sixth term of the sequence is 25, find the smallest possible value of <i>a</i> .
	[5 marks]
	Turn over for the next question
	rum over for the next question

Do	not	write
ou	tside	the
	bo	X

10	A scientist is researching the effects of caffeine. She models the mass of caffeine in the body using
	$m = m_0 e^{-kt}$
	where m_0 milligrams is the initial mass of caffeine in the body and m milligrams is the mass of caffeine in the body after t hours.
	On average, it takes 5.7 hours for the mass of caffeine in the body to halve.
	One cup of strong coffee contains 200 mg of caffeine.
10 (a)	The scientist drinks two strong cups of coffee at 8 am. Use the model to estimate the mass of caffeine in the scientist's body at midday. [4 marks]
	[4 marks]

o noi utsia bo	e the

10 (b)	The scientist wants the mass of caffeine in her body to stay below 480 mg
	Use the model to find the earliest time that she could drink another cup of strong coffee.
	Give your answer to the nearest minute. [3 marks]
10 (c)	State a reason why the mass of caffeine remaining in the scientist's body predicted by the model may not be accurate. [1 mark]
	Turn over for the next question

11 The daily world production of oil can be modelled using

$$V = 10 + 100 \left(\frac{t}{30}\right)^3 - 50 \left(\frac{t}{30}\right)^4$$

where V is volume of oil in millions of barrels, and t is time in years since 1 January 1980.

11 (a) (i) The model is used to predict the time, T, when oil production will fall to zero.

Show that T satisfies the equation

$$T = \sqrt[3]{60T^2 + \frac{162\,000}{T}}$$

[3 marks]

11 (a) (ii) Use the iterative formula $T_{n+1} = \sqrt[3]{60T_n^2 + \frac{162\,000}{T_n}}$, with $T_0 = 38$, to find the values of T_1 , T_2 , and T_3 , giving your answers to three decimal places.

[2 marks]

Do	not	writ
ou	tside	e the
	I	

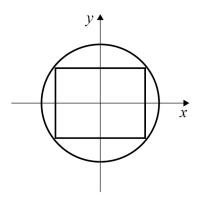
11 (a) (iii)	Explain the relevance of using $T_0=38$ [1 mark]
11 (b)	From 1 January 1980 the daily use of oil by one technologically developing country can be modelled as
	$V=4.5 imes 1.063^t$
	Use the models to show that the country's use of oil and the world production of oil
	will be equal during the year 2029. [4 marks]
	Turn over for the next question

Do I	าot	write
out	side	the
	box	K

12	$p(x) = 30x^3 - 7x^2 - 7x + 2$	
12 (a)	Prove that $(2x + 1)$ is a factor of $p(x)$	[2 marks]
12 (b)	Factorise $p(x)$ completely.	
		[3 marks]

Do	not	write
ou	tside	e the
	ho	~

12 (c)	o real solutions to the equation	
	$\frac{30\sec^2 x + 2\cos x}{7} = \sec x + 1$	
	•	[5 marks]


Turn over for the next question

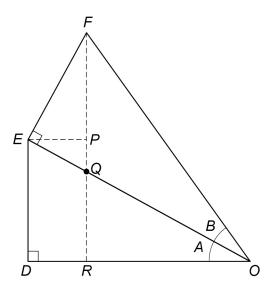
Turn over ▶

A company is designing a logo. The logo is a circle of radius 4 inches with an inscribed rectangle. The rectangle must be as large as possible.

The company models the logo on an x-y plane as shown in the diagram.

Use calculus to find the maximum area of the rectangle.

Fully justify your answer.	[10 marks]


 		_
 		-
		_
 		-
		_
 		_
 		_
 		_
		-
 		_
 		-
 		_
		_
	Turn over for the next question	
	Turn over for the next question	
	Turn over for the next question	
	Turn over for the next question	
	Turn over for the next question	
	Turn over for the next question	
	Turn over for the next question	
	Turn over for the next question	
	Turn over for the next question	
	Turn over for the next question	
	Turn over for the next question	
	Turn over for the next question	
	Turn over for the next question	

Turn over ▶

Some students are trying to prove an identity for $\sin (A + B)$.

They start by drawing two right-angled triangles ODE and OEF, as shown.

The students' incomplete proof continues,

Let angle DOE = A and angle EOF = B.

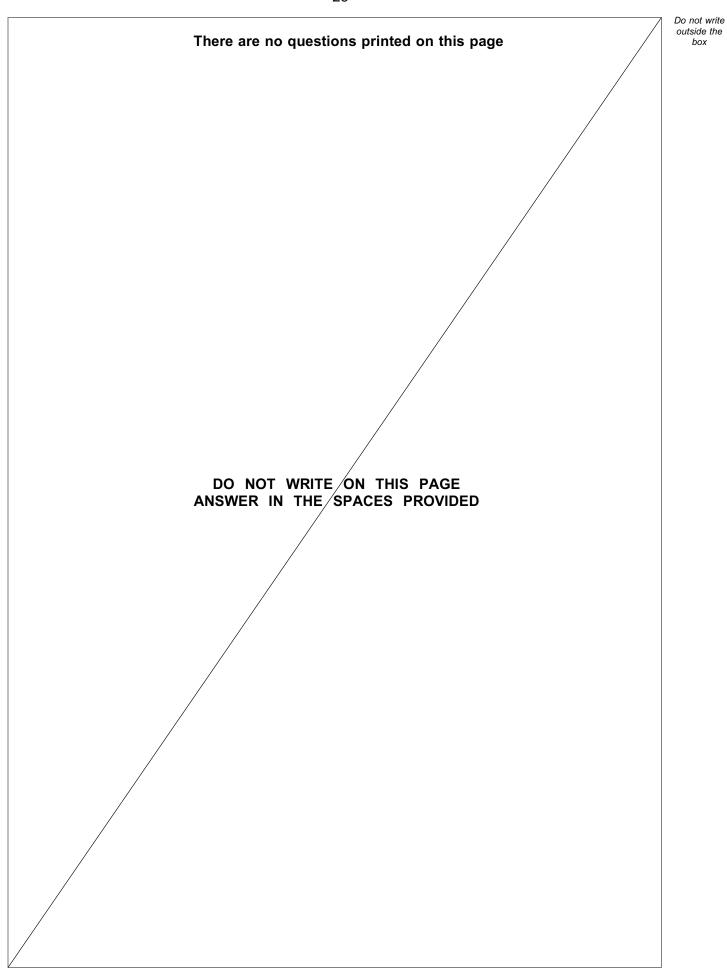
In triangle OFR,

Line 1
$$\sin(A + B) = \frac{RF}{OF}$$

Line 2 $= \frac{RP + PF}{OF}$
Line 3 $= \frac{DE}{OF} + \frac{PF}{OF} \text{ since } DE = RP$
Line 4 $= \frac{DE}{....} \times \frac{....}{OF} + \frac{PF}{EF} \times \frac{EF}{OF}$
Line 5 $= + \cos A \sin B$

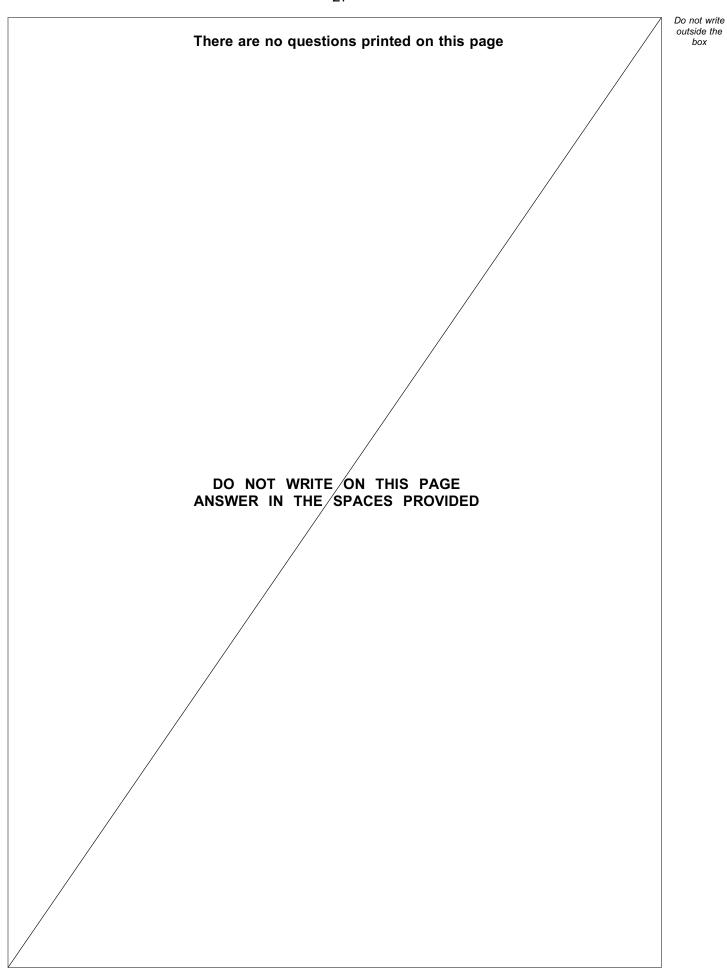
14 (a)	Explain why $\frac{PF}{EF} \times \frac{EF}{OF}$ in Line 4 leads to $\cos A \sin B$ in Line 5
--------	---

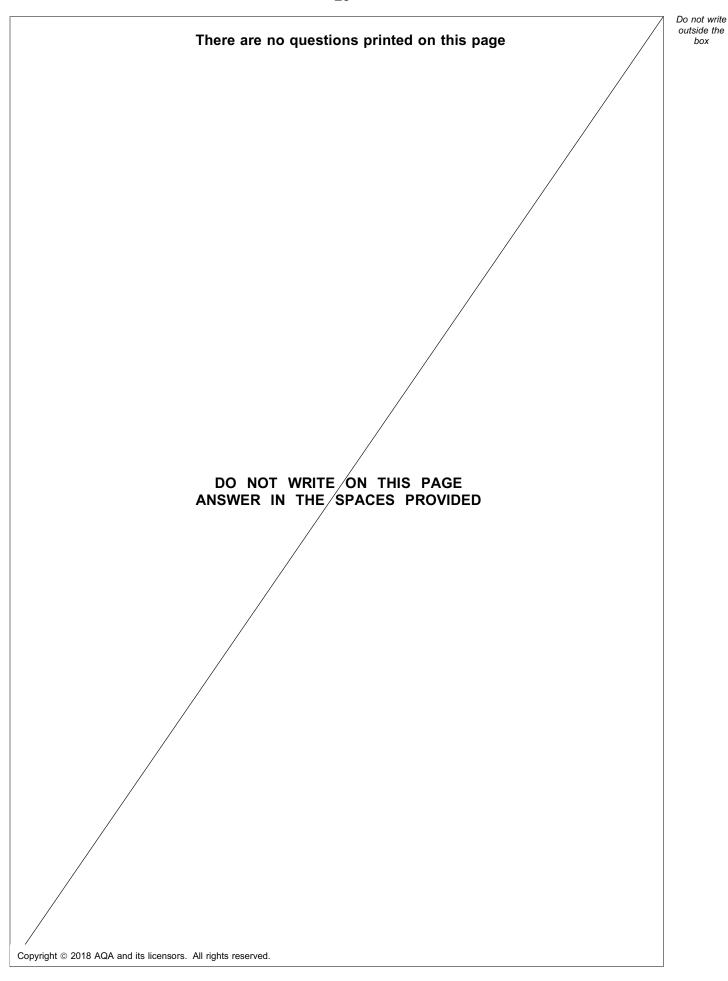
[2 marks]



14 (b) Complete Line 4 and Line 5 to prove the identity $= \frac{\textit{DE}}{\textit{OF}} \times \frac{.....}{\textit{OF}} + \frac{\textit{PF}}{\textit{EF}} \times \frac{\textit{EF}}{\textit{OF}}$ Line 4 = + cos A sin BLine 5 [1 mark] 14 (c) Explain why the argument used in part (a) only proves the identity when A and B are acute angles. [1 mark] 14 (d) Another student claims that by replacing B with -B in the identity for $\sin(A + B)$ it is possible to find an identity for $\sin (A - B)$. Assuming the identity for sin(A + B) is correct for all values of A and B, prove a similar result for $\sin (A - B)$. [3 marks]

_	
A curve has equation $y = x^3 - 48x$	
The point A on the curve has x coordinate -4	
The point B on the curve has x coordinate $-4 + h$	
Show that the gradient of the line AB is $h^2 - 12h$	
	[4 marks]
Explain how the result of part (a) can be used to show that A is a stationathe curve.	
	ary point on [2 marks]





There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

