

GCE

Chemistry A

Unit H032/01: Breadth in chemistry

Advanced Subsidiary GCE

Mark Scheme for June 2018

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2018

Annotations available in RM Assessor

Annotation	Meaning
✓	Correct response
×	Incorrect response
^	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
_	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.

You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet **Instructions for Examiners**. If you are examining for the first time, please read carefully **Appendix 5 Introduction to Script Marking: Notes for New Examiners**.

SECTION A

Question	Answer	Marks	Guidance
1	С	1	
2	С	1	
3	В	1	
4	С	1	
5	A	1	
6	С	1	ALLOW +6
7	D	1	
8	С	1	
9	A	1	
10	D	1	
11	В	1	
12	В	1	
13	С	1	
14	В	1	
15	D	1	
16	С	1	ALLOW 3
17	A	1	
18	D	1	
19	С	1	
20	D	1	
	Total	20	

SECTION B

	Ques	stion	Answer					Marks	Guidance
21	(a)	(i)	²⁹ Si	Protons 14	Neutrons 16	Electrons 14	✓	1	
	(a)	(ii)	(28 × 92.2	r = 28.11 (t 23) + (29 × 100 86 OR 28.2	4.68) + (30 >	HE ANSWER ard 2 marks < 3.09)		2	For 1 mark: ALLOW ECF → to 2 DP if: • %s used with wrong isotopes ONCE OR • transposed decimal places for ONE %
	(b)	(i)	CARE: CI	×2) has 6 n		Cl and O are electrons (3 L ons (2 LPs)		1	NOTE: O and CI electrons MUST be shown differently from C electrons (e.g. expected answer) IGNORE inner shells ALLOW diagram with missing C, O or CI symbols. For C=O bond, ALLOW sequence ×ו• ALLOW non-bonding electrons unpaired

Question		Answer	Marks	Guidance
(b)	(ii)	Shape Trigonal planar ✓	3	ALLOW 3 handed pairs (ROD)
		Number of bonded regions (C has) 3 electron (dense) regions OR 3 bonding regions ✓		ALLOW 3 bonded pairs (BOD) OR 3 sigma bonds OR 2 bonded pairs and 1 double bond OR 4 bonded pairs including a double bond IGNORE bonded atoms IGNORE just 3 bonds
		electron pair repulsion (Seen anywhere) electron pairs/bonded pairs/bonded regions repel OR electron pairs move as far apart as possible OR bonds repel ✓		ALLOW alternative phrases/words for repel e.g. 'push apart' IGNORE electrons repel (pairs needed) DO NOT ALLOW atoms repel
(c)		Highest energy electron(s) in a p orbital/p sub-shell ✓	1	ALLOW outer electron(s) in a p orbital/sub-shell BUT IGNORE p shell ALLOW electron configuration ends in p OR the last electron is in a p orbital ALLOW valence electron(s) in p orbital/sub-shell
		Total	8	

Q	uesti	on	Answer		Guidance
22	(a)	(i)	Oxidised AND (Mg) transfers/loses/donates 2 electrons ✓ 2 essential	1	ALLOW Mg loses 6 electrons: 3 Mg in equation ALLOW Mg → Mg ²⁺ + 2e ⁻ IGNORE oxidation numbers (even if wrong)
	(a)	(ii)	FIRST CHECK ANSWER ON THE ANSWER LINE IF answer = 2.26 (3 SF) award 3 marks $n(H_3PO_4) = \frac{1.24 \times 50.0}{1000} = 0.062(0) \text{ (mol)} \checkmark$ $n(Mg) = \frac{3}{2} \times 0.062(0) = 0.093(0) \text{ (mol)} \checkmark$ mass of Mg = $0.0930 \times 24.3 = 2.26 \text{ (g)} \checkmark$ 3 SF required	3	At least 3SF needed throughout BUT ALLOW no trailing zeroes (e.g. 0.062 for 0.0620) ALLOW ECF from $n(H_3PO_4)$ ALLOW ECF from $n(Mg)$ COMMON ERRORS for 2 marks 3:2 ratio omitted $\rightarrow n(Mg) = 0.062(0) \rightarrow 1.51 (g)$ Inverted 2:3 ratio $\rightarrow n(Mg) = 0.0413 \rightarrow 1.00 (g)$
	(a)	(iii)	Separation of solid Filter to obtain solid/precipitate ✓ Requires realisation that solid is filtered off. Solid may be stated within in 'removal of water' Removal of water Dry (solid) OR Evaporate (water/solution/liquid) ✓	2	ALLOW Removal of water Evaporate/ distil water/solution/liquid IGNORE 'distil' if product OR H ₂ is distilled Collection of remaining solid Requires realisation that solid remains IGNORE 'Leave to crystallise' (already solid)
	(a)	(iv)	Formula	2	In equation: NO ECF from incorrect formula ALLOW multiples IGNORE state symbols (even if incorrect) Soluble Mg salts include MgCl ₂ , MgSO ₄ , Mg(NO ₃) ₂ , MgBr ₂ , MgI ₂ If unsure, check with TL e.g. 3MgCl ₂ + 2H ₃ PO ₄ → Mg ₃ (PO ₄) ₂ + 6HCl

Question	Answer	Marks	Guidance
(b) (i)	FIRST CHECK ANSWER ON THE ANSWER LINE IF answer = 315 (cm ³) award 4 marks	4	If there is an alternative answer, check to see if there is any ECF credit possible
	Amount of PH ₃ $n(PH_3) = \frac{3.20 \times 10^{-2}}{4} \text{ OR } 8(.00) \times 10^{-3} \text{ (mol) } \checkmark$		ALLOW ECF throughout
	Unit conversions $p \text{ conversion} \rightarrow \text{Pa} = 100 \times 10^3 \text{ (Pa)}$ AND $T \text{ conversion} \rightarrow \text{K} = 473 \text{ (K)} \checkmark$		Common Errors (3 marks) Use of $n(H_3PO_4) = 3.20 \times 10^{-2}$ (Very common) $V = \frac{3.2(0) \times 10^{-2} \times 8.314 \times 473}{100 \times 10^3} \times 10^6$ $= 1258.40704 \text{ cm}^3 \text{ (1260 to 3 SF)}$
	Evidence of use of rearranged gas equation OR $V = \frac{nRT}{p}$ OR $V = \frac{8(.00) \times 10^{-3} \times 8.314 \times 473}{100 \times 10^{3}}$ OR $V = 3.15 \times 10^{-4} \checkmark$		No temperature conversion from ${}^{\circ}$ C to K $V = \frac{8(.00) \times 10^{-3} \times 8.314 \times 200}{100 \times 10^{3}} \times 10^{6}$ = 133 cm ³
	Calculator: = 3.1460176×10^{-4} V conversion of m ³ \rightarrow cm ³ V = $3.15 \times 10^{-4} \times 10^{6} = 315 \text{ cm}^{3}$ \checkmark		No p conversion from kPa to Pa $V = \frac{8(.00) \times 10^{-3} \times 8.314 \times 473}{100} \times 10^{6}$ = 315000 cm ³
	Calculator from unrounded cm ³ : 314.60176 cm ³ Requires 3 OR MORE SF, correctly rounded		No volume conversion from m^3 to cm^3 $V = 3.15 \times 10^{-4}$
	ALLOW use of R = 8.31 \rightarrow 314.4504 \rightarrow 314 to 3SF		IGNORE use of 24/24000 for molar volume e.g. $3.2(0) \times 10^{-3} \times 24000 = 768$ scores zero $8(.00) \times 10^{-3} \times 24000 = 292$ scores 1st mark only
(b) (ii)	$4PH_3 + 8O_2 \rightarrow P_4O_{10} + 6H_2O \checkmark$	1	ALLOW multiples
	Total	13	

Q	uesti	on	Answer	Marks	Guidance
23	23 (a)	(i) FIRST, CHECK THE ANSWER ON ANSWER LINE IF $\triangle_r H = -457$ OR -458 (kJ mol ⁻¹) award 4 marks IF $\triangle_r H = \pm 229$ OR 457 (kJ mol ⁻¹) award 3 marks	4	FULL ANNOTATIONS MUST BE USED ALLOW ECF throughout	
			Energy released in J OR kJ = 25.0 × 4.18 × 28.0 = 2926 (J) OR 2.926 (kJ) ✓		ALLOW 2930 J OR 2.93 kJ DO NOT ALLOW < 3 SF IGNORE any sign and units
			Correctly calculates $n(AgNO_3)$ = $0.512 \times \frac{25.0}{1000} = 1.28 \times 10^{-2} \text{ (mol) } \checkmark$		i.e. ALLOW correctly calculated number in J OR kJ
			ΔH per mole AgNO ₃ in kJ AND 3 SF Answer MUST divide energy by $n(AgNO_3)$ $\pm \frac{2.926}{1.28 \times 10^{-2}} = \pm 228.59375$ $= \pm 229 \text{ (kJ)} \checkmark$ 3 SF needed Sign NOT needed ΔH for 2 mol AgNO ₃ AND − sign AND 3 SF $\Delta H_r = 2 \times -228.59375 = -457 \text{ (kJ mol}^{-1}\text{)} \checkmark$ OR $2 \times -229 = -458 \text{ (kJ mol}^{-1}\text{)} \checkmark$		Alternative approach using 1 mol Mg Energy released = 2926 (J) OR 2.926 (kJ) \checkmark $n(AgNO_3)$ = 1.28 × 10 ⁻² (mol) \checkmark $n(Mg) = \frac{1.28 \times 10^{-2}}{2}$ = 6.4 × 10 ⁻³ (mol) \checkmark $\Delta H_r = \frac{2.926}{6.4 \times 10^{-3}}$ = -457 (kJ mol ⁻¹) \checkmark - sign AND 3 SF needed
	(a)	(ii)	$Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s) \checkmark$ State symbols required	2	ALLOW AgNO ₃ (aq) + NaCl(aq) \rightarrow AgCl(s) + NaNO ₃ (aq)
			White precipitate AND AgNO₃/Ag ⁺ NOT ALL reacted OR NO white precipitate AND AgNO₃/Ag ⁺ ALL reacted ✓		Observation needs to be linked to conclusion

Question	Answer	Marks	Guidance
(b)	Number of molecules Number of molecules	4	FULL ANNOTATIONS MUST BE USED THROUGHOUT NOTE: Look for marking criteria within annotations on Boltzmann distribution diagram
	Curve Curve starts within one small square of origin AND curve does not touch x axis at high energy AND curve does not increase by more than one small square at higher energy ✓ Labels Axes labels correct: Number of molecules AND Energy ✓		IGNORE slight inflexion on the curve For labels, ALLOW number of particles ALLOW amount of molecules/particles IGNORE number of atoms ALLOW kinetic energy
	Curves for two temperatures Drawing of two curves with higher and lower temperature clearly identified in diagram or text AND higher T maximum to right AND at least one small square lower than lower T max ✓ Explanation 1 mark More molecules have energy greater than E _a OR		IGNORE enthalpy for energy IGNORE curves meeting at higher energy BUT DO NOT ALLOW crossing over by more than one small square ALLOW more molecules have the energy to react IGNORE more successful collisions OR collide more frequently
	Greater area under curve above <i>E</i> _a ✓ <i>Could be in diagram</i> Total	10	DO NOT ALLOW explanation is in terms of two activation energies (i.e. 'catalyst explanation)

Q	uesti	ion	Answer	Marks	Guidance	
24	(a)		Structural isomers: Different structural formulae AND same molecular formula ✓	5	For 'structural': ALLOW different structure OR different displayed/ skeletal formula DO NOT ALLOW any reference to spatial/space/3D Same formula is not sufficient (no 'molecular') Different arrangement of atoms is not sufficient (no 'structure'/'structural')	
			Common molecular formula: 1 mark C₅H₁₂ for all 3 hydrocarbons ✓		ALLOW 5 carbons and 12 hydrogens ALLOW for 2 marks: Different structural formulae AND same molecular formula ✓ of C₅H₁₂ ✓	
			Boiling point and branching: 1 mark Boiling point decreases with more branching OR more methyl/alkyl groups/side chains OR shorter carbon chain ✓		Comparisons needed throughout ORA throughout ALLOW comparison between any alcohols, e.g. A is least branched and has highest b pt C is most branched and has lowest b pt	
			Branching and London forces: Could be seen anywhere within response More branching gives less (surface) contact AND fewer/weaker London forces ✓ Energy and intermolecular forces: 1 mark		ALLOW induced dipole(–dipole) interactions IGNORE van der Waals'/vdw forces ALLOW SA for surface area ALLOW 'harder to overcome intermolecular forces ALLOW more energy to separate the molecules	
			Less energy to break London forces/ intermolecular forces/intermolecular bonds/ ✓		IGNORE just 'bonds' intermolecular/London forces required	

Questi	ion	Answer	Marks	Guidance
(b)	(i)	Radical substitution ✓	1	ALLOW Free radical substitution
(b)	(ii)		2	
		A B		
		3 ✓ 4 ✓		
(b)	(iii)		2	
		Structure of D		
		Structure of a trichloro isomer of A , e.g.		ALLOW correct structural OR displayed
		CI CI		OR skeletal formula OR mixture of the above
				(as long as unambiguous)
				IGNORE molecular formula
		Cl ✓		
		ALLOW any trichloro isomer of A CHECK carefully		
		Equation		ALLOW multiples,
		$C_5H_{12} + 3CI_2 \rightarrow C_5H_9CI_3 + 3HCI \checkmark$		e.g. $2C_5H_{12} + 6Cl_2 \rightarrow 2C_5H_9Cl_3 + 6HCl$
		Molecular formulae required		5.g. 205.112 · 5012 / 2051 19013 · 51101
		NO ECF from incorrect structure of D		
		Total	10	

Q	uesti	on	Answer	Marks	Guidance
25	(a)	(i)	$H_{3}C$ H $H_{3}C$ H H H H H H H	3	ALLOW correct structural OR displayed OR skeletal formulae OR mixture of the above (as long as unambiguous) IGNORE molecular formula ALLOW CH ₃ — ALLOW 1 mark for G AND H combined is structures are correct but in wrong boxes
	(a)	(ii)	2-methylpropan-1-ol ✓ Both numbers required	1	IGNORE absence of hyphen or use of dots or commas as separators DO NOT ALLOW 2-methylprop-1-ol OR 2-methpropan-1-ol OR 2-methypropan-1-ol

Question	Answer	Marks	Guidance
(b) (ANNOTATE ANSWER WITH TICKS AND CROSSES	3	1st curly arrow must • go to the C of C-Br AND • start from, OR be traced back to any point across width of lone pair on O of OH
	AND curly arrow from C−Br bond to Br atom ✓ CH ₃ C ₂ H ₅ C ₃ C ₄ C ₄ C ₅ C ₆ C ₇ C ₇ C ₈ C ₇ C ₈ C ₇ C ₈ C ₉ C ₁ C ₂ C ₃ C ₄ C ₄ C ₄ C ₅ C ₆ C ₇ C ₈ C ₈ C ₉ C ₁ C ₁ C ₁ C ₁ C ₁ C ₁ C ₂ C ₃ C ₄ C ₄ C ₄ C ₄ C ₅ C ₆ C ₇ C ₈ C ₈ C ₉		• OR start from – charge on O of TOH ion OH OH OH (Lone pair NOT needed if curly arrow shown from OT)
	IGNORE incorrect R groups for curly arrow marks IGNORE presence of Na ⁺ /Na but OH ⁻ needed i.e. Na ⁺ OH ⁻ ; NaOH ⁻ can be allowed with correct use of curly arrow		2nd curly arrow must start from, OR be traced back to, any part of C-Br bond and go to Br C-Br C-Br C-Br C-Br ALLOW S _N 1 mechanism for 2 curly arrow marks
	Products 1 mark correct organic product AND Br ⁻ ✓ CH ₃ C ₂ H ₅ —C—OH + Br ⁻ IGNORE presence of Na ⁺ but Br ⁻ needed i.e. Na ⁺ Br ⁻ /NaBr ⁻ can be allowed BUT NaBr does NOT show Br ⁻ NOTE: curly arrows can be straight, snake-like, etc. but NOT double headed or half headed arrows		First mark Dipole shown on C–Br bond, $C^{\delta+}$ and $Br^{\delta-}$, AND curly arrow from C–Br bond to Br atom \checkmark $\begin{array}{ccccccccccccccccccccccccccccccccccc$
			Second mark Curly arrow from OH ⁻ AND to correct carbocation CH3 C2H5 C3H5 C4 C4 C5H C5H C4 C4 C5H C5H

(Question		Answer	Marks	Guidance
	(b)	(ii)	Disappearance of peak at 500–800 cm ⁻¹ OR C–Br peak ✓	2	ALLOW value within range 500–800 cm ⁻¹
			Appearance of peak at 3200–3600 cm ⁻¹ OR alcohol O–H peak ✓		ALLOW value within range 3200–3600 cm ⁻¹ DO NOT ALLOW responses that only describe the
					spectrum shown
			Total	9	

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building **Shaftesbury Road** Cambridge **CB2 8EA**

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office

Telephone: 01223 552552 Facsimile: 01223 552553

