

A-level CHEMISTRY (7405/3)

Paper 3

Specimen 2015

Session

Time allowed: 2 hours

Materials

For this paper you must have:

- the Data Booklet, provided as an insert
- a ruler
- a calculator.

Instructions

- Answer **all** questions.
- Show all your working.

Information

• The maximum mark for this paper is 90.

Please write clearly, in block capita	als, to allow character computer recognition.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	

	Section A
	Answer all questions in this section.
1	Ethanol can be oxidised by acidified potassium dichromate(VI) to ethanoic acid in a two-step process.
	ethanol —> ethanal —> ethanoic acid
0 1 . 1	In order to ensure that the oxidation to ethanoic acid is complete, the reaction is carried out under reflux.
	Describe what happens when a reaction mixture is refluxed and why it is necessary, in this case, for complete oxidation to ethanoic acid.
	[3 marks]
0 1 . 2	Write a half-equation for the overall oxidation of ethanol into ethanoic acid. [1 mark]

1 . 3 The boiling points of the organic compounds in a reaction mixture are shown in **Table 1**.

Table 1

Compound	ethanol	ethanal	ethanoic acid
Boiling point / °C	78	21	118

Use these data to describe how you would obtain a sample of ethanal from a mixture of these three compounds. Include in your answer a description of the apparatus you would use and how you would minimise the loss of ethanal. Your description of the apparatus can be either a description in words or a labelled sketch.
[5 marks]

Question 1 continues on the next page

0 1 . 4	Use your knowledge of structure and bonding to explain why it is possible to separate ethanal in this way. [2 marks]
0 1 . 5	A student obtained a sample of a liquid using the apparatus in Question 1.3.
	Describe how the student could use chemical tests to confirm that the liquid contained ethanal and did not contain ethanoic acid. [5 marks]

2	Ethanol and ethanoic acid react reversibly to form ethyl ethanoate and water according to the equation:
	$CH_3COOH + CH_3CH_2OH \rightleftharpoons CH_3COOCH_2CH_3 + H_2O$
	A mixture of 8.00×10^{-2} mol of ethanoic acid and 1.20×10^{-1} mol of ethanol is allowed to reach equilibrium at 20 °C.
	 The equilibrium mixture is placed in a graduated flask and the volume made up to 250 cm³ with distilled water. A 10.0 cm³ sample of this equilibrium mixture is titrated with sodium hydroxide
	 added from a burette. The ethanoic acid in this sample reacts with 3.20 cm³ of 2.00 × 10⁻¹ mol dm⁻³ sodium hydroxide solution.
0 2 . 1	Calculate the value for K_c for the reaction of ethanoic acid and ethanol at 20 °C. Give your answer to the appropriate number of significant figures.
	[6 marks]

Question 2 continues on the next page

K_c = _____

A student obtained the titration results given in **Table 2**.

Table 2

	Rough	1	2	3
Final burette reading / cm ³	4.60	8.65	12.85	16.80
Initial burette reading / cm ³	0.10	4.65	8.65	12.85
Titre / cm³				

0	2	2	Complete	Table	2.
			-		

[1 mark]

0	2		3	Calculate the mean titre and justify your choice of titres.
---	---	--	---	---

[2 marks]

Calculation

Mean titre =	cm ³

Justification _____

 $oxed{0}$ 2 . 4 The pH ranges of three indicators are shown in Table 3.

Table 3

Indicator	pH range
Bromocresol green	3.8–5.4
Bromothymol blue	6.0–7.6
Thymol blue	8.0–9.6

Select from **Table 3** a suitable indicator for the titration of ethanoic acid with sodium hydroxide.

[1 mark]

0 2 . 5	The error in the mean titre for this experiment is $\pm 0.15~\text{cm}^3$. Calculate the percentage error in this mean titre.	[1 mark]
0 2 . 6	Percentage error = Suggest how, using the same mass of ethanoic acid, the experiment could be improved to reduce the percentage error. [2]	
	Turn over for the next question	

3	A peptide is hydrolysed to form a solution containing a mixture of amino acids. This mixture is then analysed by silica gel thin-layer chromatography (TLC) using a toxic solvent. The individual amino acids are identified from their $R_{\rm f}$ values.
	Part of the practical procedure is given below.
	 Wearing plastic gloves to hold a TLC plate, draw a pencil line 1.5 cm from the bottom of the plate.
	2. Use a capillary tube to apply a very small drop of the solution of amino acids to the mid-point of the pencil line.
	 Allow the spot to dry completely. In the developing tank, add the developing solvent to a depth of not more than 1 cm.
	 5. Place your TLC plate in the developing tank. 6. Allow the developing solvent to rise up the plate to the top. 7. Remove the plate and quickly mark the position of the solvent front with a pencil.
	8. Allow the plate to dry in a fume cupboard.
0 3 . 1	Parts of the procedure are in bold text.
	For each of these parts, consider whether it is essential and justify your answer. [4 marks]

0	3	. 2	Outline the steps needed to locate the positions of the amino acids on the T and to determine their $R_{\rm f}$ values.	LC plate
				[4 marks]
				_
			Explain why different amine saids have different D. values	
U	3	. 3	Explain why different amino acids have different R _f values.	[2 marks]

4	Ethanedioic acid is a weak acid. Ethanedioic acid acts, initially, as a monoprotic acid.	
	$HO \longrightarrow C \longrightarrow C \longrightarrow HO \longrightarrow C \longrightarrow $	
0 4 . 1	Use the concept of electronegativity to justify why the acid strengths of ethanedioic acid and ethanoic acid are different.	[6 marks]

0 4 . 2	A buffer solution is made by adding 6.00×10^{-2} mol of sodium hydroxide to a containing 1.00×10^{-1} mol of ethanedioic acid $(H_2C_2O_4)$. Assume that the sodium hydroxide reacts as shown in the following equation in this buffer solution, the ethanedioic acid behaves as a monoprotic acid.	
	$H_2C_2O_4(aq) + OH^-(aq) \longrightarrow HC_2O_4^-(aq) + H_2O(I)$	
	The dissociation constant K_a for ethanedioic acid is 5.89 × 10 ⁻² mol dm ⁻³ .	
	Calculate a value for the pH of the buffer solution. Give your answer to the appropriate number of significant figures.	[5 marks]
	pH =	
	Question 4 continues on the next page	

0 4 . 3	In a titration, the end point was reached when 25.0 cm³ of an acidified solution containing ethanedioic acid reacted with 20.20 cm³ of 2.00 ×10 ⁻² mol dm ⁻³ potassium manganate(VII) solution. Deduce an equation for the reaction that occurs and use it to calculate the original concentration of the ethanedioic acid solution. [4 marks]	\$]
	Equation	-
	Calculation	
	Original concentration = mol dm	-3

5	A sample of ethanedioic acid was treated with an excess of an unknown alcohol in the presence of a strong acid catalyst. The products of the reaction were separated and analysed in a time of flight (TOF) mass spectrometer. Two peaks were observed at $m/z = 104$ and 118.
0 5 . 1	Identify the species responsible for the two peaks. [2 marks]
0 5 . 2	Outline how the TOF mass spectrometer is able to separate these two species to give two peaks. [4 marks]

Section B

Answer all questions in this section.

Only one answer per question is allowe	d.
---	----

For each answer completely fill in the circle alongside the appropriate answer.

CORRECT METHOD WRONG METHODS © © 😂 🕏

If you want to change your answer you must cross out your original answer as shown.

If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown.

0 6 Which change requires the largest amount of energy?

[1 mark]

- $\mathbf{A} \qquad \mathsf{He}^{\scriptscriptstyle +}(\mathsf{g}) \; \longrightarrow \; \mathsf{He}^{\scriptscriptstyle 2^{\scriptscriptstyle +}}(\mathsf{g}) \; + \; \mathsf{e}^{\scriptscriptstyle -} \qquad \boxed{\bigcirc}$
- $\mathbf{B} \qquad \operatorname{Li}(\mathsf{g}) \qquad \longrightarrow \qquad \operatorname{Li}^{+}(\mathsf{g}) \ + \ \mathsf{e}^{-} \qquad \qquad \bigcirc$
- $\mathbf{C} \qquad \mathrm{Mg}^{+}(\mathrm{g}) \longrightarrow \mathrm{Mg}^{2+}(\mathrm{g}) + \mathrm{e}^{-} \qquad \bigcirc$
- $\mathbf{D} \qquad \mathsf{N}(\mathsf{g}) \qquad \longrightarrow \qquad \mathsf{N}^{\scriptscriptstyle +}(\mathsf{g}) \; + \; \mathsf{e}^{\scriptscriptstyle -} \qquad \qquad \bigcirc$

 \bigcirc

 \bigcirc

 \circ

A sample of 2.18 g of oxygen gas has a volume of 1870 cm³ at a pressure of 101 kPa.

What is the temperature of the gas? The gas constant is $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$.

[1 mark]

- **A** 167 K
- **B** 334 K
- **C** 668 K
- **D** 334 000 K

0	8

An ester is hydrolysed as shown by the following equation.

$$RCOOR' + H_2O \longrightarrow RCOOH + R'OH$$

What is the percentage yield of RCOOH when 0.50 g of RCOOH ($M_r = 100$) is obtained from 1.0 g of RCOOR[/] ($M_r = 150$)?

[1 mark]

- **A** 33%
- **B** 50%
- **C** 67%
- D 75% \bigcirc

0 9

A saturated aqueous solution of magnesium hydroxide contains $1.17 \times 10^{-3} \, g$ of Mg(OH)₂ in 100 cm³ of solution. In this solution, the magnesium hydroxide is fully dissociated into ions.

What is the concentration of Mg²⁺(aq) ions in this solution?

[1 mark]

- **A** $2.82 \times 10^{-2} \,\text{mol dm}^{-3}$
- **B** $2.01 \times 10^{-3} \,\text{mol dm}^{-3}$
- **C** $2.82 \times 10^{-3} \,\text{mol dm}^{-3}$
- **D** $2.01 \times 10^{-4} \,\text{mol dm}^{-3}$

Turn over for the next question

1 0	The	e rate equati	ion for the hyd	drogenation of	ethene		
			$C_2H_4(g)$	+ H ₂ (g)	→ C ₂ H ₆ (g)		
	is F	Rate = $k[C_2]$	H ₄][H ₂]				
		a fixed temp ssure.	erature, the r	eaction mixture	e is compresso	ed to triple the	original
	Wh	at is the fac	tor by which t	the rate of reac	tion changes?	·	[1 mark]
	Α	6	0				
	В	9					
	С	12	0				
	D	27					
1 1	diss	sociates and	the following	is heated to a grequilibrium is $ \stackrel{1}{\rightleftharpoons} \frac{1}{2} N_2(g)$ moles of gas p	established. + $\frac{3}{2}$ H ₂ (g)		
	В	2.0					
	С	2.5					
	D	3.0					
1 2	Wh	ich change		the value of the $O_2(g) \rightleftharpoons$		nstant ($K_{\scriptscriptstyle p}$) for	this reaction?
	Α	Increasing	the total pres	sure of the sys	tem.	0	
	В	Increasing	the concentra	ation of sulfur ti	rioxide.		
	С	Increasing	the concentra	ation of sulfur d	lioxide.	0	
	D	Increasing	the temperate	ure.			

1 3		is the pHciated?	l of a 0.020 m	nol dm ⁻³ sc	olution of	a diprotic ad	cid which is o	completely
	G.:000							[1 mark]
	Α	1.00	\bigcirc					
	В	1.40						
	С	1.70	0					
	D	4.00						
1 4	The a	acid disso × 10 ⁻⁴ mo	ciation constant ol dm ⁻³	ant, K_a , of	a weak a	cid HA has	the value	
	What	is the pH	I of a 4.25 × 1	10 ⁻³ mol dr	n ⁻³ solutio	n of HA?		14
	_							[1 mark]
	Α	5.96						
	В	3.59						
	С	2.98	0					
	D	2.37	0					
1 5	Magr	nesium re	acts with hyd	rochloric a	cid accor	ding to the	following equ	uation.
			Mg	+ 2HCl	→ I	MgCl ₂ + H	2	
	requi		ulated the mil ct with an exc 95.3).					
			ollowing uses					ate number
	or sig	nificant fig	gures to give	tne correc	t result of	the calcula	tion?	[1 mark]
	Α	4.476 ×	10 ⁻² dm ³	0				
	В	4.48 × 10	$0^{-2} dm^3$					
	С	4.50 × 10	$0^{-2} dm^3$	0				
	D	44.8 × 10	$0^{-3} dm^3$					

1 6	In wh	nich reaction is hydrogen acting as an oxidising agent?	[1 mark]
	Α	$Cl_2 + H_2 \longrightarrow 2HCl$	
	В	$(CH_3)_2CO + H_2 \longrightarrow (CH_3)_2CHOH$	
	С	$N_2 + 3H_2 \longrightarrow 2NH_3$	
	D	$2Na + H_2 \longrightarrow 2NaH$	
1 7	In wh	nich reaction is the metal oxidised?	[1 mark]
	Α	$2Cu^{2+} + 4I^{-} \longrightarrow 2CuI + I_{2}$	
	В	$ [\operatorname{Fe}(\operatorname{H}_2\operatorname{O})_6]^{3^+} + \operatorname{Cl}^- \longrightarrow [\operatorname{Fe}(\operatorname{H}_2\operatorname{O})_5(\operatorname{Cl})]^{2^+} + \operatorname{H}_2\operatorname{O} \bigcirc $	
	С	$[CoCl_4]^{2-} + 6H_2O \longrightarrow [Co(H_2O)_6]^{2+} + 4Cl^-$	
	D	$Mg + S \longrightarrow MgS$	
1 8	The	following cell has an EMF of +0.46 V.	
		$Cu \mid Cu^{2+} \mid Ag^+ \mid Ag$	
	Whic	h statement is correct about the operation of the cell?	[1 mark]
	A	Metallic copper is oxidised by Ag ⁺ ions.	
	В	The silver electrode has a negative polarity.	0
	С	The silver electrode gradually dissolves to form Ag^+ ions.	0
	D	Electrons flow from the silver electrode to the copper electrode via an external circuit.	
Ĺ			

1 9		n experiment to identify a Group 2 metal (X), 0.102 g of X reacts with an excequeous hydrochloric acid according to the following equation.	ess
		$X + 2HCl \longrightarrow XCl_2 + H_2$	
	The y	volume of hydrogen gas given off is 65 cm ³ at 99 kPa pressure and 303 K. gas constant is $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$.	
	Whic	ch is X?	ark]
	A	Barium	
	В	Calcium	
	С	Magnesium	
	D	Strontium	
2 0		at forms when a solution of sodium carbonate is added to a solution of um(III) nitrate?	ark]
	Α	A white precipitate of gallium(III) carbonate.	
	В	A white precipitate of gallium(III) hydroxide.	
	С	A white precipitate of gallium(III) carbonate and bubbles of carbon dioxide.	
	D	A white precipitate of gallium(III) hydroxide and bubbles of carbon dioxide.	
2 1		ch compound gives a colourless solution when an excess of dilute aqueous nonia is added?	
		[1 ma	ark]
	Α	MgCl ₂	
	В	AgCl	
	С	CuCl ₂	
	D	AlCl ₃	

2 2	What is the final species produced when an excess of aqueous ammonia to aqueous aluminium chloride?		
	Α	$[Al(NH_3)_6]^{3+}$	
	В	$[Al(OH)_3(H_2O)_3] \bigcirc$	
	С	$[Al(OH)_4(H_2O)_2]$	
	D	[Al(OH)(H2O)5]2+	
2 3		following equation represents the oxidation of vanadium(IV) ions by ganate(VII) ions in acid solution.	
		$5V^{4+} + MnO_4^- + 8H^+ \longrightarrow 5V^{5+} + Mn^{2+} + 4H_2O$	
		volume of 0.020 mol dm ⁻³ KMnO ₄ solution is required to oxidise comp	pletely a
	Soluti	on containing 0.010 mol of vanadium(IV) ions?	[1 mark]
	Α	10 cm ³	
	В	25 cm ³	
	С	50 cm ³	
	D	100 cm ³	
2 4	How	many isomers have the molecular formula C_5H_{12} ?	[1 mark]
	Α	2 🔘	
	В	3 🔘	
	С	4 🔘	
	D	5	

2 5	Which molecule is not produced when ethane reacts with bromine in the presof ultraviolet light?				
	Or un	raviolet light:	[1 mark]		
	Α	$C_2H_4Br_2$			
	В	HBr O			
	С	H ₂			
	D	C_4H_{10}			
2 6	How	many structural isomers have the molecular formula $\mathrm{C_4H_9Br?}$	[1 mark]		
	A	2 🔘			
	В	3 🔾			
	С	4 🔘			
	D	5			
2 7	What (D is	t is the major product of the reaction between but-1-ene and DBr? deuterium and represents ² H)	[1 mark]		
	A	CH ₂ DCH ₂ CH ₂ CH ₂ Br			
	В	CH ₂ DCH ₂ CHBrCH ₃			
	С	CH ₃ CH ₂ CHBrCH ₂ D			
	D	CH ₃ CH ₂ CHDCH ₂ Br			
2 8	Why	are fluoroalkanes unreactive?	[1 mark]		
	A	Fluorine is highly electronegative.			
	В	The F ⁻ ion is very stable.			
	С	They are polar molecules.			
	D	The C–F bond is very strong.			

2 9	Whic	ch alcohol could not be produced by the reduction of an aldehyde or a	ketone? [1 mark]
	Α	2-methylbutan-1-ol	
	В	2-methylbutan-2-ol	
	С	3-methylbutan-1-ol	
	D	3-methylbutan-2-ol	
3 0	Whic	ch compound forms optically active compounds on reduction?	[1 mark]
	Α	CH ₃ CH ₂ C(CH ₃)=CHCH ₃	
	В	$CH_3CH_2C(CH_3)=CH_2$	
	С	CH ₃ COCH ₃	
	D	CH ₃ CH ₂ COCH ₃	
	_		
3 1	How	many secondary amines have the molecular formula $C_4H_{11}N$?	[1 mark]
	Α	2 🔘	
	В	3	
	С	4 🔘	
	D	5	
3 2	Whic	ch compound has the highest boiling point?	[1 mark]
	Α	C_2H_4	
	В	C_2H_6	
	С	CH ₃ NH ₂	
	D	CH₃F ○	

3 3	Which compound can polymerise by reaction with itself?			[1 mark]
	Α	NH ₂ CH ₂ CH ₂ NH ₂	0	
	В	CH ₃ CH ₂ CONH ₂	0	
	С	HOOCCH₂COOH [0	
	D	NH ₂ CH ₂ COCl	0	
3 4	A drug is designed to simulate one of the following molecules that adsorbs onto the active site of an enzyme. Which molecule requires the design of an optically active drug? [1 ma			
	A	Н—СН—СООН ОН	0	
	В	CH ₃ —C—COOH O		
	С	CH₃−CH−COOF OH	1 0	
	D	CH ₂ -CH ₂ -COOI OH	4	
		Turn over for	the next question	

3 5	Which amine has only three peaks in its proton NMR spectrum?			
	Α	Methylamine		
	В	Trimethylamine		
	С	Diethylamine		
	D	Propylamine		
			END OF QUESTIONS	
Copyright © 2014	AQA a	nd its licensors. All rights reserve	ed.	