

A-level CHEMISTRY (7405/2)

Paper 2: Organic and Physical Chemistry

Specimen 2015

Session

Time allowed: 2 hours

Materials

For this paper you must have:

- the Data Booklet, provided as an insert
- a ruler
- a calculator.

Instructions

- Answer all questions.
- Show all your working.

Information

• The maximum mark for this paper is 105.

Please write clearly, in block cap	oitals, to allow character computer recognition.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	

Answer **all** questions.

This question involves the use of kinetic data to deduce the order of a reaction and calculate a value for a rate constant.

The data in **Table 1** were obtained in a series of experiments on the rate of the reaction between compounds **A** and **B** at a constant temperature.

Table 1

Experiment	Initial concentration of A / mol dm ⁻³	Initial concentration of B / mol dm ⁻³	Initial rate / mol dm ⁻³ s ⁻¹
1	0.12	0.26	2.10 × 10 ⁻⁴
2	0.36	0.26	1.89 × 10 ⁻³
3	0.72	0.13	3.78 × 10 ^{−3}

0 1 . 1	Show how these data can be used to deduce the rate expression for the rebetween A and B .	eaction
	[3	3 marks]

The data in **Table 2** were obtained in two experiments on the rate of the reaction between compounds **C** and **D** at a constant temperature.

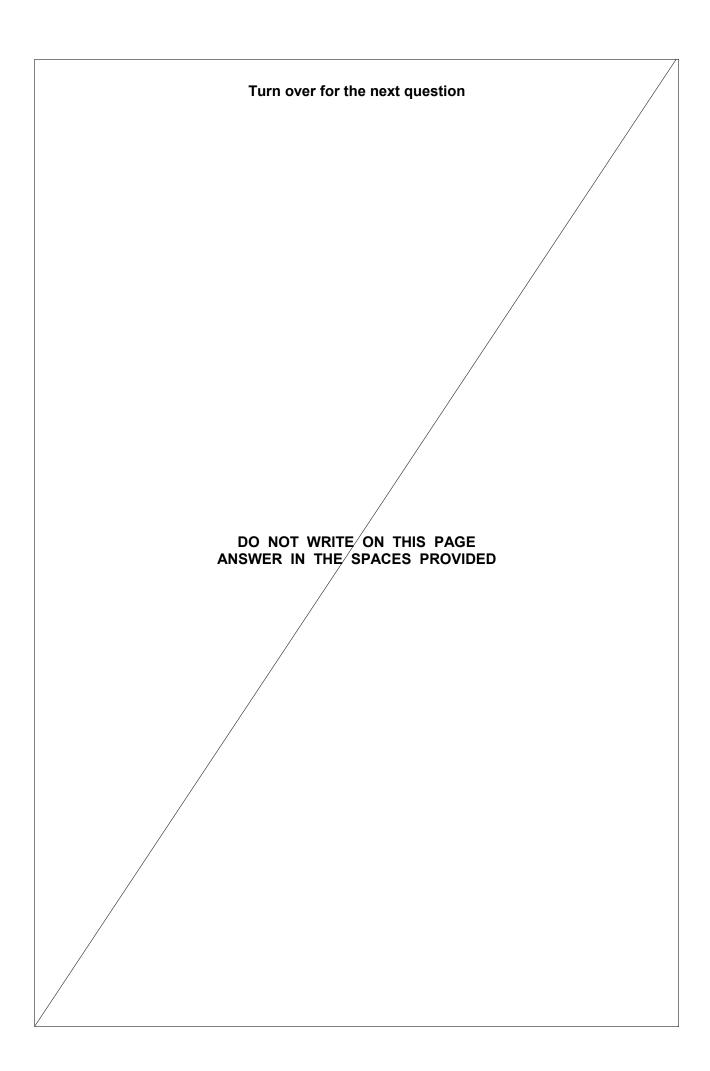
Table 2

Experiment	Initial concentration of C / mol dm ⁻³	Initial concentration of D / mol dm ⁻³	Initial rate / mol dm ⁻³ s ⁻¹
4	1.9 × 10 ⁻²	3.5 × 10 ⁻²	7.2 × 10 ⁻⁴
5	3.6 × 10 ⁻²	5.4 × 10 ⁻²	To be calculated

The rate equation for this reaction is	The rate	equation	for this	reaction	is
--	----------	----------	----------	----------	----

$$rate = k[\mathbf{C}]^2[\mathbf{D}]$$

0	1		2	Use the data	from experime	ent 4 to calcula	ate a value t	or the rate	constant,	<i>k</i> , at this
		•			Deduce the u					
				•					[3 marks]

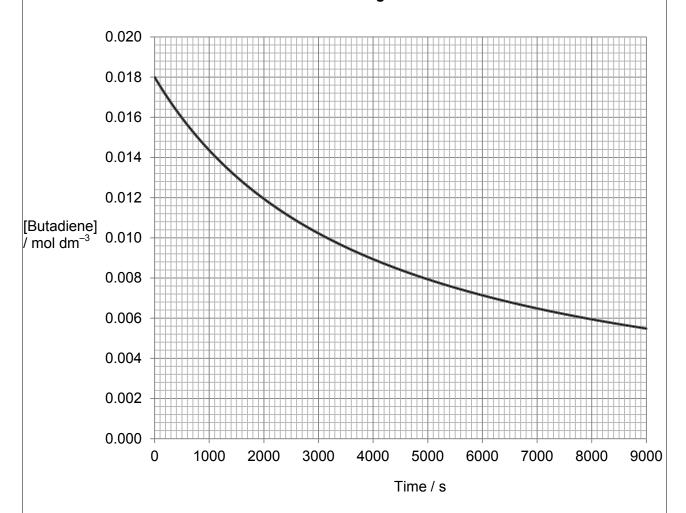

0 1 . 3 Calculate a value for the initial rate in experiment 5.

[1 mark]

Initial rate =
$$\frac{1}{3}$$
 mol dm⁻³ s⁻¹

Question 1 continues on the next page

0 1 . 4	The rate equation for a reaction is	
	rate = k[E]	
	Explain qualitatively why raising the temperature by 10 °C has a much graffeet on the rate of the reaction than doubling the concentration of E	eater
	effect on the rate of the reaction than doubling the concentration of E .	[3 marks]
0 1 . 5	A slow reaction has a rate constant $k = 6.51 \times 10^{-3} \text{ mol}^{-1} \text{ dm}^3$ at 300 K.	
	Use the equation $\ln k = \ln A - E_a/RT$ to calculate a value, in kJ mol^{-1} , for activation energy of this reaction.	the
	The constant $A = 2.57 \times 10^{10} \text{ mol}^{-1} \text{ dm}^3$. The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$.	
	The gas constant it constant it may be	[2 marks]
	Activation energy =	



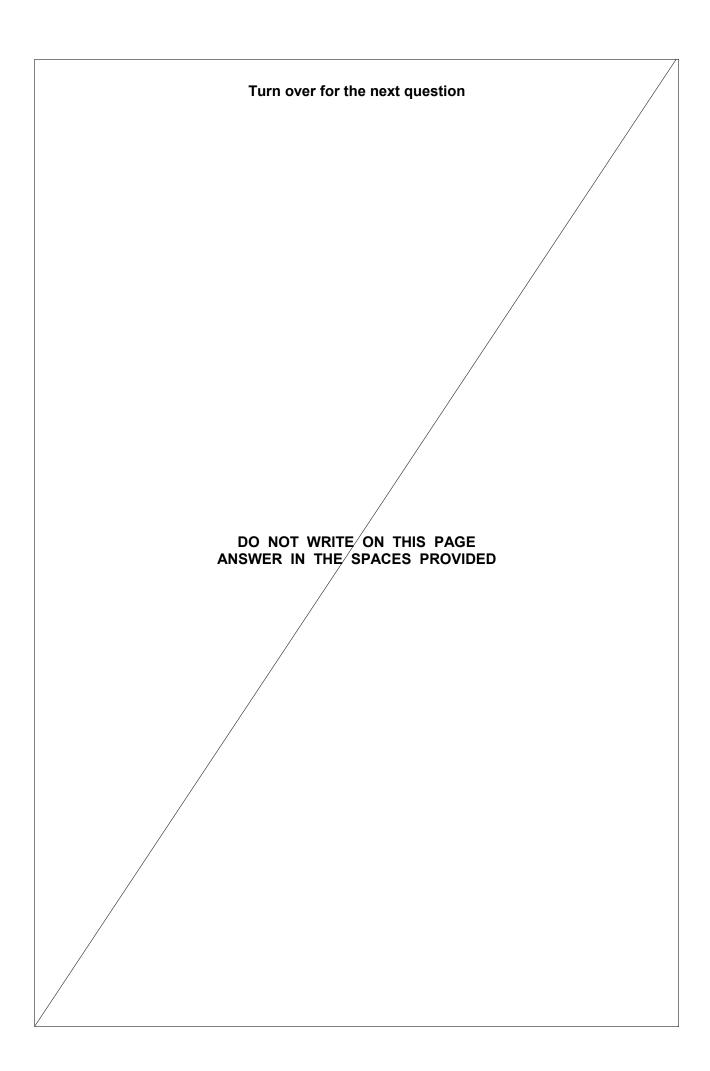
2 Butadiene dimerises according to the equation

$$2C_4H_6 \longrightarrow C_8H_{12}$$

The kinetics of the dimerisation are studied and the graph of the concentration of a sample of butadiene is plotted against time. The graph is shown in **Figure 1**.

Figure 1

0 2 • **1** Draw a tangent to the curve when the concentration of butadiene is 0.0120 mol dm⁻³.

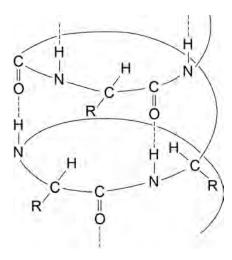

[1 mark]

0 2 . 2	The initial rate of reaction in this experiment has the value $4.57 \times 10^{-6} \text{ mol dm}^{-3} \text{ s}^{-1}$.	
	Use this value, together with a rate obtained from your tangent, to justify order of the reaction is 2 with respect to butadiene.	
		[5 marks]
	Turn over for the next question	

3		e (C ₈ H ₁₈) is noothly in ca									
			Fi	igure	2						
				\ \	\setminus	_					
0 3 . 1	Give the	IUPAC nam	ne for isooc	tane.							[1 mark]
0 3 . 2	Deduce t	the number	of peaks in	the ¹	³ C NM	1R spe	ectrun	n of is	ooctar	ne.	[1 mark]
Only one a	answer is a	llowed.									
Completely	y fill in the o	circle alongs	side the app	oropri	ate an	swer.					
CORRECT MET		WRONG METH		• (€							
If vou wan	t to change	your answe	er vou must	cros	s out v	our o	rigina	l ansv	ver as	showr	ı. 💓
	to return to	o an answer									
	5		0								
		_									
	6		0								
	7		0								
	8		0								

0 3 . 3	Isooctane can be formed, together with propene and ethene, in a reaction in whone molecule of an alkane that contains 20 carbon atoms is cracked.	iich
	Using molecular formulas, write an equation for this reaction.	ark]
0 3 . 4	How do the products of the reaction in Question 3.3 show that the reaction is an example of thermal cracking? [1 magestallian and the company of the compan	
0 3 . 5	Deduce the number of monochloro isomers formed by isooctane. Draw the structure of the monochloro isomer that exists as a pair of optical isomers. [2 main	rks]
	Number of monochloro isomers	
	Structure	
0 3 . 6	An isomer of isooctane reacts with chlorine to form only one monochloro compound.	
	Draw the skeletal formula of this monochloro compound. [1 magnetic property of the skeletal formula of this monochloro compound.	ark]
	Question 3 continues on the next page	

	A sample of a monochlorooctane is obtained from a comet. The chlorine in the monochlorooctane contains the isotopes 35 Cl and 37 Cl in the ratio 1.5 : 1.0 Calculate the M_r of this monochlorooctane.	
	[2 marl	ks]
	$M_r = $	
0 3 . 8	Isooctane reacts with an excess of chlorine to form a mixture of chlorinated	
	compounds. One of these compounds contains 24.6% carbon and 2.56% hydrogen by mass.	
	Calculate the molecular formula of this compound. [3 mark]	ks]
	Mala gular formula -	
	Molecular formula =	



4	Alcohol A (CH ₃) ₂ CHCH(OH)CH ₃ undergoes potassium dichromate(VI) and with concentration		
0 4 . 1	Deduce the IUPAC name for alcohol A .	[1 mari	«]
0 4 . 2	Draw the structure of the organic product, B , reaction with acidified potassium dichromate(_ {]
0 4 . 3	Two isomeric alkenes, C and D , are formed with concentrated sulfuric acid. Name the mechanism for this dehydration rea	•	
		[1 marl	〈]
0 4 . 4	Draw the structure of each isomer.	[2 marks	s]
	Isomer C	Isomer D	
		issins. 2	

0	4 .	5	Name the type of structural isomerism shown by C and D .	[1 mark]
0	4 .	6	List alcohol A , product B and isomer C in order of increasing boiling point.	[1 mark]
0	4 .	7	Draw the structure of the isomer of A that is not oxidised by acidified potassium dichromate(VI).	[1 mark]
0	4 .	8	Draw the structure of the isomer of A that cannot be dehydrated to form a by reaction with concentrated sulfuric acid.	n alkene
				[1 mark]
			Turn over for the next question	

Figure 3 shows a simplified representation of the arrangement of some amino acids in a portion of a protein structure in the form of an α -helix.

Figure 3

[1 mark]

0 5 . 2 Explain the origin of the interaction represented by the dotted lines in **Figure 3**. [4 marks]

The tripeptide shown in **Figure 4** is formed from the amino acids glycine, threonine and lysine.

Figure 4

0 6 . 1 Draw a separate circle around **each** of the asymmetric carbon atoms in the tripeptide in **Figure 4**.

[1 mark]

0 6 . 2 Draw the zwitterion of glycine.

[1 mark]

0 6 . 3 Draw the structure of the species formed when glycine reacts with an excess of bromomethane.

[1 mark]

0 6 . 4 Deduce the IUPAC name of threonine.

[1 mark]

0 6 . 5 Draw the structure of the species formed by lysine at low pH.

[1 mark]

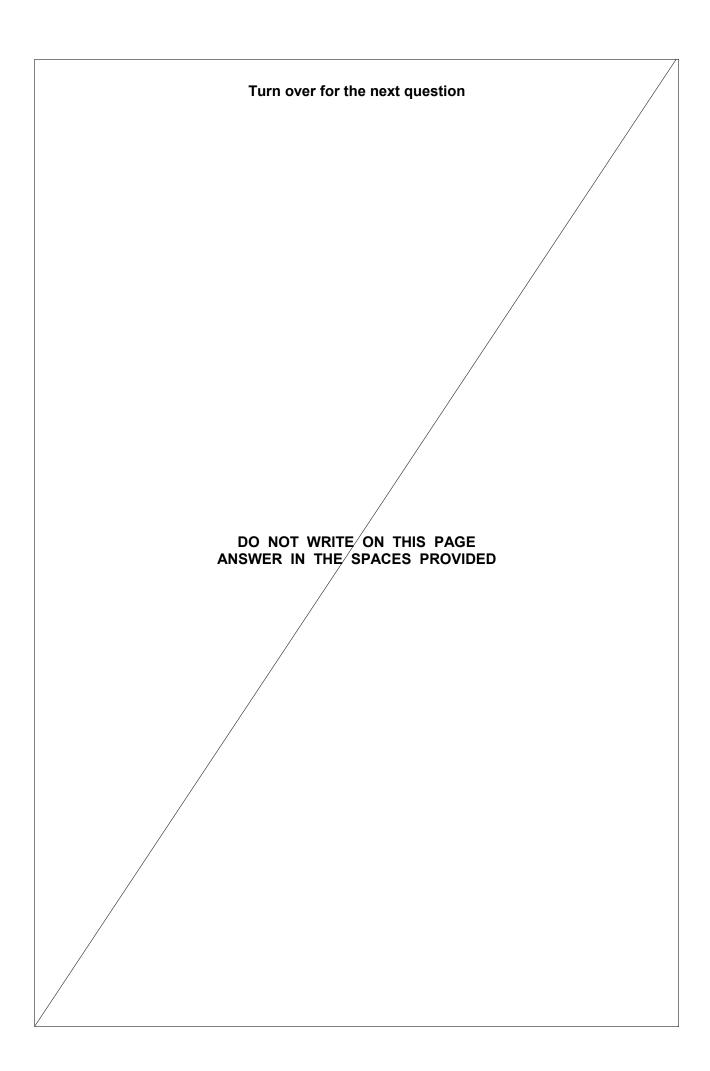
7	Repeating units of two polymers, P and Q , are shown in Figure 5	5 .
	Figure 5	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_
	P Q	
0 7 . 1	Draw the structure of the monomer used to form polymer P . Name the type of polymerisation involved.	[2 marks]
	Monomer	
	Type of polymerisation	
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
0 7 . 2	Draw the structures of two compounds that react together to form	n polymer Q . [2 marks]
	Structure of compound 1	
	Structure of compound 2	

07.3	Suggest an environmental advantage of polymer Q over polymer P . Justify your answer. Advantage Justification	[3 marks]
	Turn over for the next question	

8 The anticancer drug cisplatin operates by reacting with the guanine in DNA.

Figure 6 shows a small part of a single strand of DNA. Some lone pairs are shown.

Figure 6


0 8 . 1 The DNA chain continues with bonds at **X** and **Y**.

State the name of the sugar molecule that is attached to the bond at ${\bf X}$.

[1 mark]

0 8 . 2	Messenger RNA is synthesised in cells in order to transfer information from DNA. The bases in one strand of DNA pair up with the bases used to synthesise RNA.
	Figure 7 shows two bases used in RNA.
	Figure 7
	H N N Irest of molecule Base A Base B Suggest which of the bases A and B forms a pair with guanine in Figure 6 when messenger RNA is synthesised. Explain how the base that you have chosen forms a base pair with guanine. [4 marks
	Question 8 continues on the next page

08.3	Cisplatin works because one of the atoms on guanine can form a co-ordinate bond with platinum, replacing one of the ammonia or chloride ligands. Another atom on another guanine can also form a co-ordinate bond with the same platinum by replacing another ligand.
	On Figure 6 , draw a ring round an atom in guanine that is likely to bond to platinum. [1 mark]
	[·
0 8 . 4	An adverse effect of cisplatin is that it also prevents normal healthy cells from replicating.
	Suggest one way in which cisplatin can be administered so that this side effect is minimised.
	[1 mark]

9 1,4-diaminobenzene is an important intermediate in the production of polymers such as Kevlar and also of polyurethanes, used in making foam seating.

A possible synthesis of 1,4-diaminobenzene from phenylamine is shown in **Figure 8**.

Figure 8

0 9 . 1 A suitable reagent for step 1 is CH₃COCl

Name and draw a mechanism for the reaction in step 1.

[5 marks]

Name of mechanism __

Mechanism

0 9 . 2	The product of step 1 was purified by recrystallisation as follows.
	The crude product was dissolved in the minimum quantity of hot water and the hot solution was filtered through a hot filter funnel into a conical flask. This filtration removed any insoluble impurities. The flask was left to cool to room temperature . The crystals formed were filtered off using a Buchner funnel and a clean cork was used to compress the crystals in the funnel . A little cold water was then poured through the crystals .
	After a few minutes, the crystals were removed from the funnel and weighed. A small sample was then used to find the melting point.
	Give reasons for each of the following practical steps. [4 marks]
	The minimum quantity of hot water was used
	The flask was cooled to room temperature before the crystals were filtered off
	The crystals were compressed in the funnel
	A little cold water was poured through the crystals
	Question 9 continues on the next page

0	9		3	The melting point of the sample in Question 9.2 was found to be slightly lower than
		-		a data-book value.

Suggest the most likely impurity to have caused this low value and an improvement to the method so that a more accurate value for the melting point would be obtained.

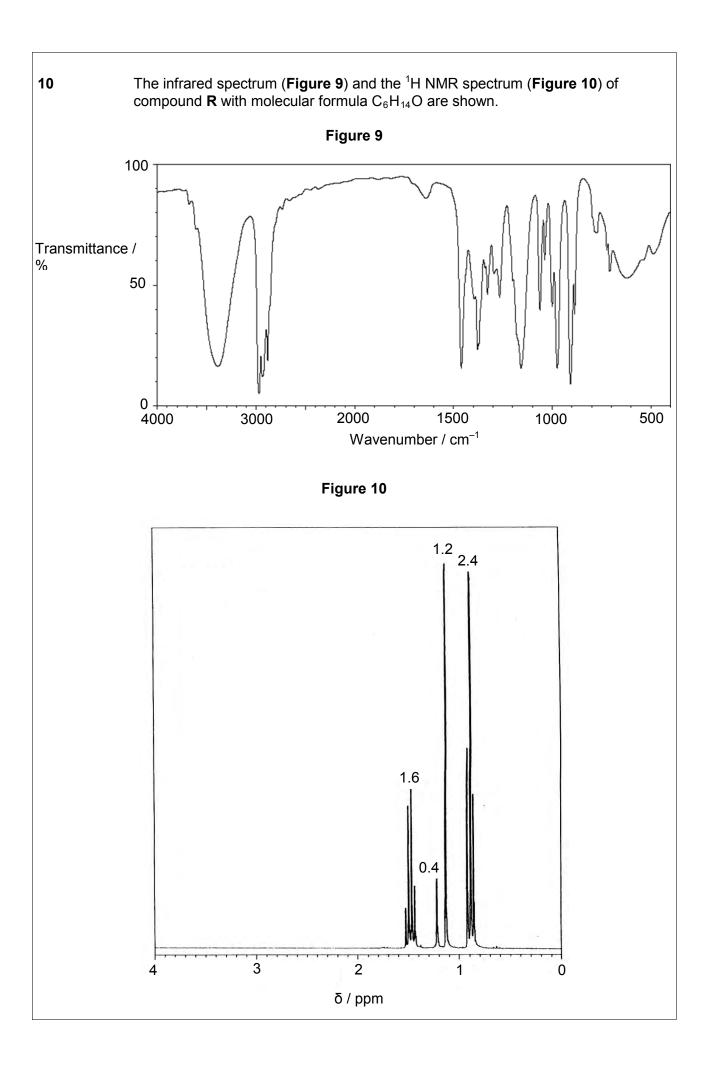

[2 marks]

Figure 8 is repeated here to help you answer the following questions.

Figure 8

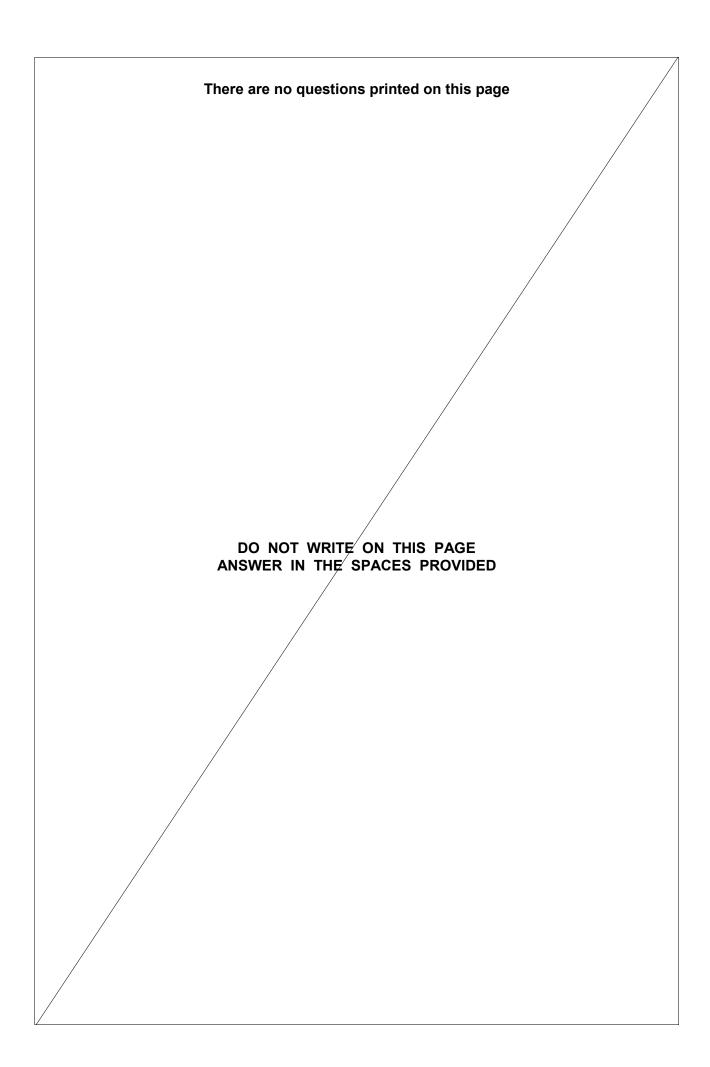
$$\begin{array}{c|c} NH_2 & Step 1 \\ \hline \end{array}$$

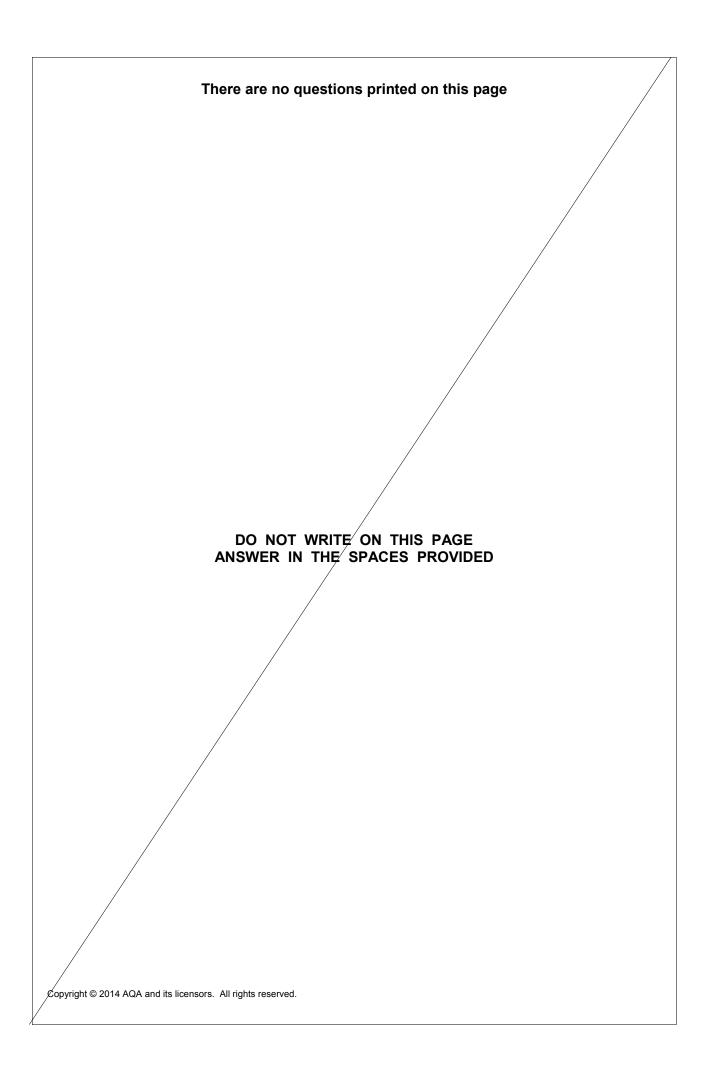
$$\begin{array}{c} Step 2 \\ \hline \\ NO_2 \\ \hline \end{array}$$

$$\begin{array}{c} Step 3 \\ \hline \\ NH_2 \\ \hline \\ NH_2 \\ \end{array}$$

$$\begin{array}{c} NHCOCH_3 \\ \hline \\ NO_2 \\ \hline \end{array}$$

0 9 . 4	In an experiment starting with 5.05 g of phenylamine, 4.82 g of purified producer obtained in step 1.	luct
	Calculate the percentage yield in this reaction. Give your answer to the appropriate number of significant figures. [3	marks]
	Percentage yield =	%
0 9 . 5	A reagent for step 2 is a mixture of concentrated nitric acid and concentrate sulfuric acid, which react together to form a reactive intermediate.	d
	Write an equation for the reaction of this intermediate in step 2.	1 mark]
0 9 . 6	Name a mechanism for the reaction in step 2.	1 mark]
0 9 . 7	00 ,	1 mark]
0 9 . 8	Identify the reagents used in step 4.	1 mark]




1 0	The relative integration values for the NMR peaks are shown on Figure 1	0.
	Deduce the structure of compound R by analysing Figure 9 and Figure 1 Explain each stage in your deductions.	0.
	Use Table A and Table B on the Data Sheet.	[8 marks]
	Turn over for the next question	
	rum over for the next question	

11	Butanone is reduced in a two-step reaction using NaBH ₄ followed by dilute hydrochloric acid.
1 1 . 1	Write an overall equation for the reduction of butanone using [H] to represent the reductant. [1 mark]
1 1 . 2	By considering the mechanism of the reaction, explain why the product has no effect on plane polarised light. [6 marks]

12	But-1-ene reacts with a reagent of the form HY to form a saturated compound. Suggest a reagent of the form HY which reacts with but-1-ene.
	[1 mark]
1 2 . 2	Name and draw a mechanism for the reaction in Question 12.1. [5 marks]
	Name of mechanism Mechanism
1 2 . 3	Explain how three isomeric products are formed when HY reacts with but-1-ene. [3 marks]
	END OF QUESTIONS

