

AS CHEMISTRY (7404/1)

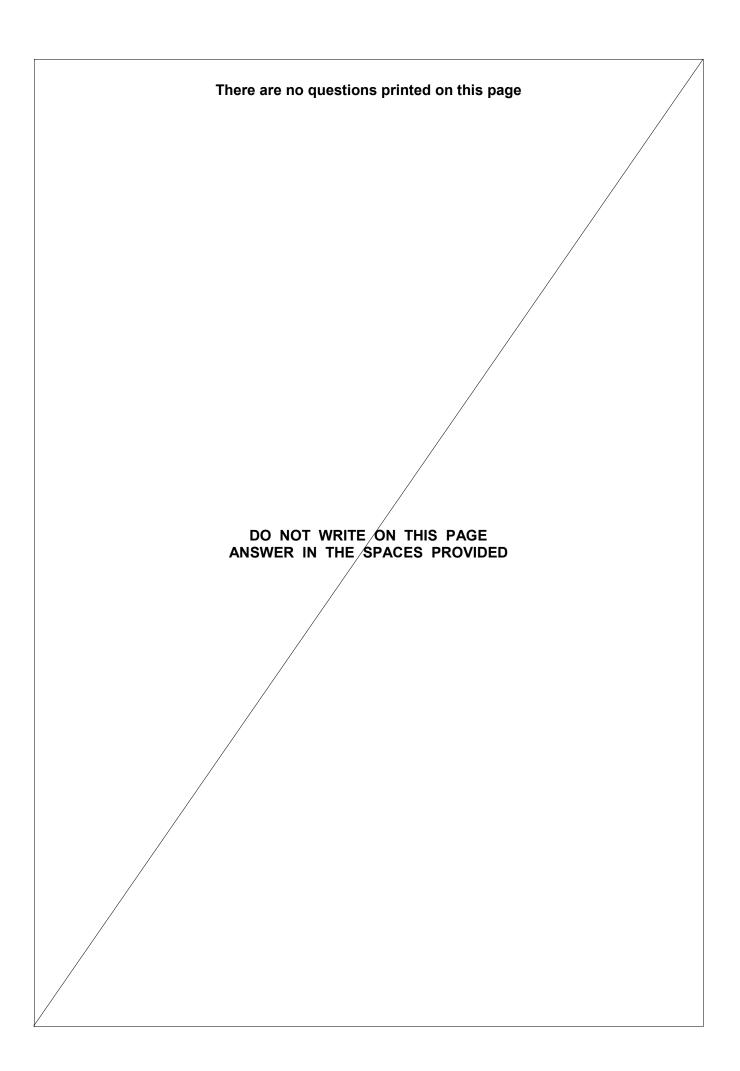
Paper 1: Inorganic and Physical Chemistry

Specimen 2015 Session Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- the Data Sheet, provided as an insert
- a ruler
- a calculator.


Instructions

- Answer all questions.
- Show all your working.

Information

The maximum mark for this paper is 80.

Please write clea	arly, in b	lock ca	apita	ls, to	allo	w ch	arac	ter (com	put	ter r	ecc	ogn	itio	n.			
Centre number				Ca	ndid	ate r	numb	er										
Surname																		
Forename(s)																		
Candidate signa	ture																	- <i>)</i>

	Section A	
	Answer all questions in this section.	
1	This question is about the elements in Group 2 and their compounds.	
0 1 . 1	Use the Periodic Table to deduce the full electron configuration of calcium. [1 ma	ark]
0 1 . 2	Write an ionic equation, with state symbols, to show the reaction of calcium with an excess of water.	ark]
0 1 . 3	State the role of water in the reaction with calcium.	ark]
0 1 . 4	Write an equation to show the process that occurs when the first ionisation energy calcium is measured. [1 magestallight calcium is measured.]	
0 1 . 5	State and explain the trend in the first ionisation energies of the elements in Group from magnesium to barium. [3 mai	
	Explanation	

0 2 . 1		of sulfur consisting of three ison ves the relative abundance of				f 32.16
		Table 1				
		Mass number of isotope	32	33		
		Relative abundance / %	91.0	1.8		
	number of	formation to determine the relative third isotope.				SS
	Give your	answer to the appropriate nur	nber of sigr	nificant figu	res.	[4 marks]
			Mass			
			Mass nu	mber =		
0 2 . 2	Describe h	now ions are formed in a time	of flight (TC	OF) mass sp	pectrometer.	[2 marks]

2 . 3	A TOF mass spectrometer can be used to determine the relative molecular mass of molecular substances.
	Explain why it is necessary to ionise molecules when measuring their mass in a TOF
	mass spectrometer. [2 mark
	Turn over for the next question

0 3.	1		quation, including st dard enthalpy of for			eaction wi	ith enthalpy	change equal [1 mark]
0 3 .	2	Explain wh	ny CF₄ has a bond a	angle of 10	9.5°.			[2 marks]
0 3 .	3	Table 2 gi	ves some values of	standard e	Г	of formatio	n (Δ _f H ^Θ). 1	
			Substance $\Delta_f H^{\Theta}$ / kJ mol ⁻¹	F ₂ (g)	CF ₄ (g) -680	HF(g) -269		
		Use this va	Ipy change for the for $C_2H_6(g)+7F_2(g)$ alue and the standa enthalpy of formation	g) > rd enthalp	2CF ₄ (g) +	6HF(g)		culate the [3 marks]
			Standard enthal	lpy of form	ation of C ₂	H ₆ (g) =		kJ mol ⁻¹

0 3 · 4 Methane reacts violently with fluorine according to the following equation.

$$CH_4(g) + 4F_2(g) \longrightarrow CF_4(g) + 4HF(g) \Delta H = -1904 \text{ kJ mol}^{-1}$$

Some mean bond enthalpies are given in **Table 3**.

Table 3

Bond	C–H	C–F	H–F
Mean bond enthalpy / kJ mol ⁻¹	412	484	562

A student suggested that one reason for the high reactivity of fluorine is a weak F–F bond .

Is the student correct? Justify your answer with a calculation using these data.

[4 marks]

Turn over for the next question

4	Colourless solutions of \mathbf{X} (aq) and \mathbf{Y} (aq) react to form an orange solution of according to the following equation.	f Z (aq)
	$\mathbf{X}(aq) + 2\mathbf{Y}(aq) \rightleftharpoons \mathbf{Z}(aq) \qquad \Delta H = -20 \text{ kJ mol}^{-1}$	
0 4 . 1	A student added a solution containing 0.50 mol of X (aq) to a solution conta 0.50 mol of Y (aq) and shook the mixture. After 30 seconds, there was no further change in colour. The amount of Z (aq) at equilibrium was 0.20 mol. Deduce the amounts of X (aq) and Y (aq) at equilibrium.	iining [2 marks]
	Amount of X (aq) =mol Amount of Y (aq) =	mol
0 4 . 2	On the grid below, draw a graph to show how the amount of Z (aq) changed time of initial mixing until 60 seconds had elapsed.	d from the [3 marks]

0 4 . 3	The student prepared another equilibrium mixture in which the equilibrium concentrations of X and Z were: $\mathbf{X}(aq) = 0.40 \text{ mol dm}^{-3} \text{ and } \mathbf{Z}(aq) = 0.35 \text{ mol dm}^{-3}$.
	For this reaction, the equilibrium constant $K_c = 2.9 \text{ mol}^{-2} \text{ dm}^6$. Calculate a value for the concentration of Y at equilibrium. Give your answer to the appropriate number of significant figures. [3 marks]
	[Y] = mol dm ⁻³
0 4 . 4	The student added a few drops of $\mathbf{Y}(aq)$ to the equilibrium mixture of $\mathbf{X}(aq)$, $\mathbf{Y}(aq)$ and $\mathbf{Z}(aq)$ in Question 4.3 .
	Suggest how the colour of the mixture changed. Give a reason for your answer. [3 marks]
	Colour change
	Reason
0 4 . 5	The student warmed the equilibrium mixture from Question 4.3 .
	Predict the colour change, if any, when the equilibrium mixture was warmed. [1 mark]

5	This question is about the chemical properties of chlorine, sodium chloride and sodium bromide.
0 5 . 1	Sodium bromide reacts with concentrated sulfuric acid in a different way from sodium chloride.
	Write an equation for this reaction of sodium bromide and explain why bromide ions react differently from chloride ions.
	[3 marks]
	Equation
	Explanation
0 5 . 2	A colourless solution contains a mixture of sodium chloride and sodium bromide.
	Using aqueous silver nitrate and any other reagents of your choice, develop a procedure to prepare a pure sample of silver bromide from this mixture. Explain each step in the procedure and illustrate your explanations with equations,
	where appropriate. [6 marks]

0 5 . 3	Write an ionic equation for the reaction between chlorine and cold dilute sodium
	hydroxide solution. Give the oxidation state of chlorine in each of the chlorine-containing ions formed. [2 marks]
	Turn over for the next question
	Tann God. 16. mo more queenen

6	This question is about reactions of calcium compounds.
0 6 . 1	A pure solid is thought to be calcium hydroxide. The solid can be identified from its relative formula mass.
	The relative formula mass can be determined experimentally by reacting a measured mass of the pure solid with an excess of hydrochloric acid. The equation for this reaction is
	$Ca(OH)_2 + 2HCl \longrightarrow CaCl_2 + 2H_2O$
	The unreacted acid can then be determined by titration with a standard sodium hydroxide solution.
	You are provided with 50.0 cm ³ of 0.200 mol dm ⁻³ hydrochloric acid. Outline, giving brief practical details, how you would conduct an accurate experiment to calculate the relative formula mass of the solid using this method. [8 marks]
	[o marks]

0 6 . 2	A 3.56 g sample of calcium chloride was dissolved in water and reacted with an excess of sulfuric acid to form a precipitate of calcium sulfate.
	The percentage yield of calcium sulfate was 83.4%.
	Calculate the mass of calcium sulfate formed. Give your answer to an appropriate number of significant figures. [3 marks]
	Mass of calcium sulfate formed = g
	Turn over for the next question

7		A sample of pure ${\rm Mg}({\rm NO_3})_2$ was decomposed by heating as shown in the e below.	quation
		$2Mg(NO3)2(s) \longrightarrow 2MgO(s) + 4NO2(g) + O2(g)$	
0 7 .	1	A 3.74×10^{-2} g sample of Mg(NO ₃) ₂ was completely decomposed by heating	g.
		Calculate the total volume, in cm ³ , of gas produced at 60.0 °C and 100 kPa. Give your answer to the appropriate number of significant figures. The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$.	
			[5 marks]
		Total volume of gas =	cm ³
0 7 .	. 2	The mass of MgO obtained in this experiment is slightly less than that expert the mass of $Mg(NO_3)_2$ used.	cted from
		Suggest one practical reason for this.	[1 mark]

				Section	В			
			Answer al	II questions	in this sectio	n.		
Only one	answer	per ques	tion is allowed	l.				
For each	n answer	complete	ly fill in the circ	cle alongsio	de the approp	riate answer		
CORRECT	METHOD	WRO	NG METHODS 🔀		Φ			
If you wa	ant to cha	ange your	answer you n	nust cross o	out your origir	nal answer as	s shown. 🔀	
If you wis		ırn to an a	answer previou	usly crosse	d out, ring the	e answer you	now wish to	select
0 8	Whic	ch of these	e atoms has th	ne largest a	itomic radius?			[1 mark]
	Α	Ar						
	В	Cl						
	С	Mg						
	D	Na	0					
0 9	Whic	ch of these	e species is th	e best redu	ıcing agent?			[1 mark]
	Α	Cl_2						
	В	Cl						
	С	I ₂						
	D	Γ	0					

1 0		hich of these pieces of apparatus has the lowest percentage error in the easurement shown?					
	measu	rement snown?	ement snown:				
	A	Volume of 25 cm with an error of ±		ured with a burette	0		
	В	Volume of 25 cm cylinder with an e		ured with a measuring ±0.5 cm ³ .	0		
	С	Mass of 0.150 g with an error of ±		ed with a balance	0		
	D	Temperature cha with a thermome	0				
1 1	A student is provided with a 5.00 cm^3 sample of 1.00×10^{-2} mol dm ⁻³ hydroacid. The student is asked to devise a method to prepare a hydrochloric ac with a concentration of 5.00×10^{-4} mol dm ⁻³ by diluting the sample with water						
	Which	of these is the cor	rect vol	ume of water that shou	ıld be added?	[1 mark]	
	A	45.0 cm ³		0			
	В	95.0 cm ³		0			
	С	100 cm ³		0			
	D	995 cm ³		0			
1 2	Which of these species has a trigonal planar structure?						
	Α	PH_3					
	В	BCl ₃					
	С	H_3O^+					
	D	CH ₃	0				

1 3	Use your understanding of intermolecular forces to predict which of these compoun has the highest boiling point.					
	nas in	le riighest boiling point.				
	A	HF	0			
	В	HCl	0			
	С	HBr				
	D	НІ				
1 4	Which type of bond is formed between N and B when a molecule of NH_3 reacts with molecule of BF_3 ?					
	Α	lonic.				
	В	Covalent.				
	С	Co-ordinate.				
	D	Van der Waals.				
1 5			as the highest electronegativity?	[1 mark]		
	Α	Na				
	В	Mg				
	С	Cl				
	D	Ar O				
1 6	Which A B	of these atoms has a strength of these atoms has a strength of the strength of	as the smallest number of neutrons?	[1 mark]		
	D	⁴ Li				
	ט	LI				

1 7	Which	of these substances does not show hydrogen bonding?	[1 mark]
	A	HF O	
	В	NH ₃	
	С	CH₃COOH ○	
	D	CHF ₃	
1 8	What is	s the formula of calcium nitrate(V)?	[1 mark]
	Α	CaNO ₃	
	В	Ca(NO ₃) ₂	
	С	Ca ₂ NO ₂	
	D	Ca(NO ₂) ₂	
1 9	Which	of these elements has the highest second ionisation energy?	[1 mark]
	В	Mg 🔾	
	С	Ne O	
	D	Ar 💿	

2 0	Which of the following shows chlorine in its correct oxidation states in the compounds shown?						
	OHOWH	•				[1	mark]
		HCl	KClO ₃	HClO			
	A	– 1	+3	+1	0		
	В	+1	- 5	– 1	0		
	С	– 1	+5	+1	0		
	D	+1	+5	– 1			
2 1		substance is n oncentrated sulf	ot produced in a refuric acid?	edox reaction wh	nen solid soc		eacts mark]
	A	H ₂ S				Li	iliaikj
	В	Н					
	С	SO ₂					
	D	I ₂					
2 2	Which of the following contains the most chloride ions?						
	Α	10 cm ³ of 3.30	de solution				
	В	20 cm ³ of 5.00	solution	0			
	С	30 cm ³ of 3.30	0				
	D	40 cm 3 of 2.50 × 10 $^{-2}$ mol dm $^{-3}$ sodium chloride solution					
			END OF QU	IESTIONS			

