

A-level CHEMISTRY (7405/1)

Paper 1: Inorganic and Physical Chemistry

Specimen 2015

Session

Time allowed: 2 hours

Materials

For this paper you must have:

- the Data Booklet, provided as an insert
- a ruler
- a calculator.

Instructions

- Answer all questions.
- Show **all** your working.

Information

• The maximum mark for this paper is 105.

Please write clearly, in block capita	ls, to allow character computer recognition.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	

	Answer all questions.
0 1 . 1	Explain how the electron pair repulsion theory can be used to deduce the shape of, and the bond angle in, ${\sf PF}_3$ [6 marks]

0 1 . 2	State the full electron configuration of a cobalt(II) ion. [1 mark]
0 1 . 3	Suggest one reason why electron pair repulsion theory cannot be used to predict the shape of the $[CoCl_4]^{2^-}$ ion. [1 mark]
0 1 . 4	Predict the shape of, and the bond angle in, the complex rhodium ion [RhCl ₄] ²⁻ [2 marks] Shape
	Bond angle
	Turn over for the next question

0 2 . 1	Explain why the atomic radii of the elements decrease across Period 3 from sodium to chlorine. [2 marks]
0 2 . 2	Explain why the melting point of sulfur (S_8) is greater than that of phosphorus (P_4) . [2 marks]
0 2 . 3	Explain why sodium oxide forms an alkaline solution when it reacts with water. [2 marks]

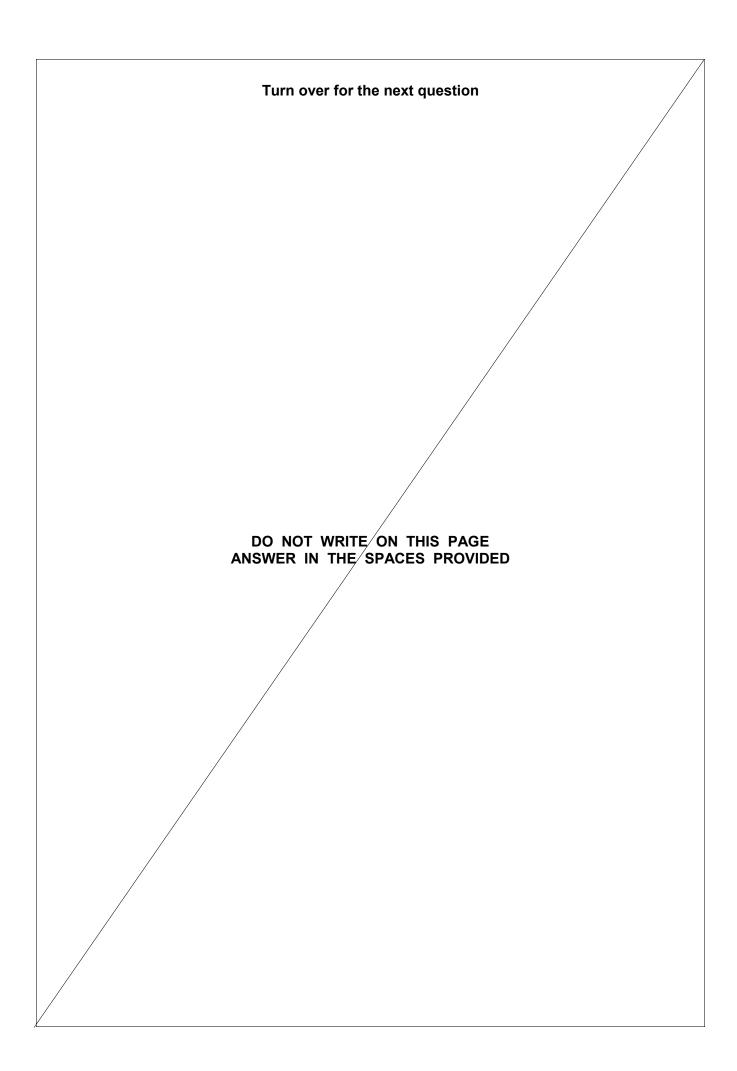
0 2 . 4	Write an ionic equation for the reaction of phosphorus(V) oxide with an excess of sodium hydroxide solution.	
	[1 m	nark]
	Turn over for the next question	

Fuel cells are an increasingly important energy source for vehicles. Standard electrode potentials are used in understanding some familiar chemical reactions including those in fuel cells.

Table 1 contains some standard electrode potential data.

Table 1

Electrode half-equ	E [⊖] / V	
$F_2 + 2e^- \longrightarrow$	2F ⁻	+2.87
$Cl_2 + 2e^- \longrightarrow$	2Cl⁻	+1.36
$O_2 + 4H^+ + 4e^- \longrightarrow$	2H ₂ O	+1.23
$Br_2 + 2e^- \longrightarrow$	2Br ⁻	+1.07
$I_2 + 2e^- \longrightarrow$	2I ⁻	+0.54
$O_2 + 2H_2O + 4e^- \longrightarrow$	40H ⁻	+0.40
$SO_4^{2-} + 4H^+ + 2e^- \longrightarrow$	SO ₂ + 2H ₂ O	+0.17
2H ⁺ + 2e [−] →	H ₂	0.00
4H ₂ O + 4e [−] →	4OH ⁻ + 2H ₂	-0.83


0 3 . 1	A salt bridge was used in a cell to measure electrode potential.	
	Explain the function of the salt bridge.	[2 marks]
0 3 . 2	Use data from Table 1 to deduce the halide ion that is the weakest reducing a	agent. [1 mark]

0 3 . 3	Use data from Table 1 to justify why sulfate ions should not be capable of oxidising bromide ions. [1 mark]
0 3 . 4	Use data from Table 1 to calculate a value for the EMF of a hydrogen–oxygen fuel cell operating under alkaline conditions. [1 mark]
	EMF =V
0 3 . 5	There are two ways to use hydrogen as a fuel for cars. One way is in a fuel cell to power an electric motor, the other is as a fuel in an internal combustion engine.
	Suggest the major advantage of using the fuel cell. [1 mark]
	Turn over for the next question

4	Many chemical processes release waste products into the atmosphere. Scientists are developing new solid catalysts to convert more efficiently these emissions into useful products, such as fuels. One example is a catalyst to convert these emissions into methanol. The catalyst is thought to work by breaking a H–H bond.					
	An equation for this formation of methanol is given below.					
	$CO_2(g) + 3H_2(g) \rightleftharpoons CH_3OH(g)$	g) + H ₂ O(g) ΔH =	–49 kJ mol	– 1	
	Some mean bond enthalpies are show	wn in Tabl e	e 2.			
	Ta	able 2				
	Bond	C=O	C-H	C-O	О–Н	
	Mean bond enthalpy / kJ mol ⁻¹	743	412	360	463	
	H–H t	oond entha	llpy =		k	J mol ⁻¹
0 4 . 2	A data book value for the H–H bond e	enthalpy is	436 kJ mol	^{−1} .		
Suggest one reason why this value is different from your answer to Question 4.1 .			1. mark] 			

0 4 . 3	Suggest one environmental advantage of manufacturing methanol fuel by this reaction.
	[1 mark]
0 4 . 4	Use Le Chatelier's principle to justify why the reaction is carried out at a high pressure rather than at atmospheric pressure. [3 marks]
0 4 . 5	Suggest why the catalyst used in this process may become less efficient if the carbon dioxide and hydrogen contain impurities. [1 mark]
	Question 4 continues on the next page

0 4 . 6	In a laboratory experiment to investigate the reaction shown in the equation 1.0 mol of carbon dioxide and 3.0 mol of hydrogen were sealed into a contai the mixture had reached equilibrium, at a pressure of 500 kPa, the yield of n was 0.86 mol.	ner. After
	$CO_2(g) + 3H_2(g) \rightleftharpoons CH_3OH(g) + H_2O(g)$	
	Calculate a value for $K_{\rm p}$ Give your answer to the appropriate number of significant figures. Give units with your answer.	[7 marks]
	K _p = Units =	

Table 3 contains some entropy data relevant to the reaction used to synthesise methanol from carbon dioxide and hydrogen. The reaction is carried out at a temperature of 250 °C.

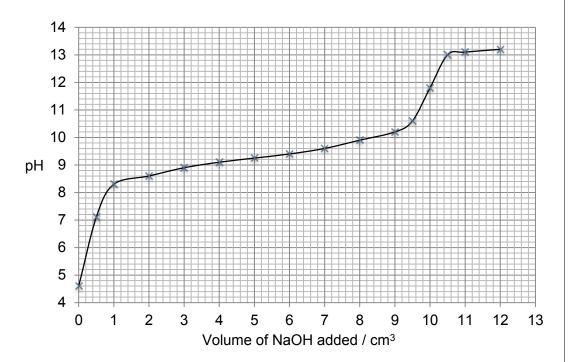
Table 3

Substance	CO ₂ (g)	H ₂ (g)	CH ₃ OH(g)	H ₂ O(g)
Entropy (S ⁹) / J K ⁻¹ mol ⁻¹	214	131	238	189

$$CO_2(g) + 3H_2(g) \rightleftharpoons CH_3OH(g) + H_2O(g)$$
 $\Delta H = -49 \text{ kJ mol}^{-1}$

0	5		1	Use this enthalpy change and data from Table 2 to calculate a value for the
		,		free-energy change of the reaction at 250 °C.
				Give units with your answer.

[4 marks]


0 5 . 2	Calculate a value for the temperature when the reaction becomes feasible.	[2 marks]
	Temperature =	K
0 5 . 3	Gaseous methanol from this reaction is liquefied by cooling before storage.	
	Draw a diagram showing the interaction between two molecules of methanol. Explain why methanol is easy to liquefy.	[4 marks]
	Diagram	
	Explanation	

6 Ammonium chloride, when dissolved in water, can act as a weak acid as shown by the following equation.

$$NH_4^+(aq) \rightleftharpoons NH_3(aq) + H^+(aq)$$

Figure 1 shows a graph of data obtained by a student when a solution of sodium hydroxide was added to a solution of ammonium chloride. The pH of the reaction mixture was measured initially and after each addition of the sodium hydroxide solution.

Figure 1

0 6 . 1 Suggest a suitable piece of apparatus that could be used to measure out the sodium hydroxide solution.

Explain why this apparatus is more suitable than a pipette for this purpose.

[2 marks]

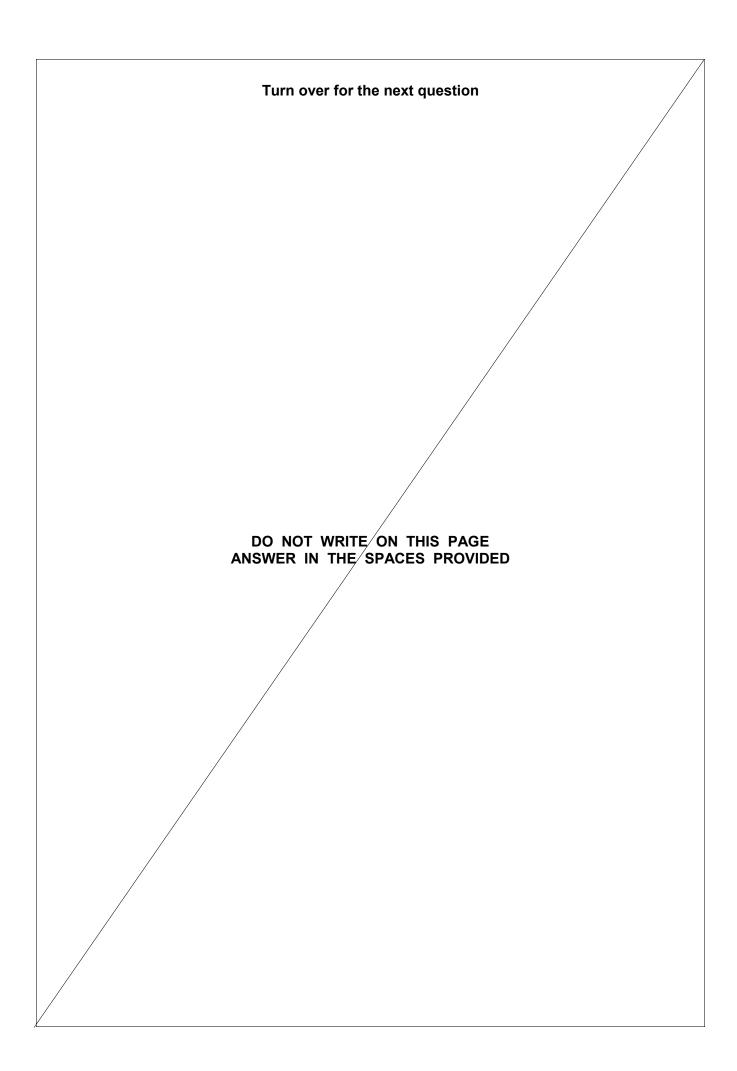
Apparatus _			
Explanation	-		

0 6 . 2	Use information from the curve in Figure 1 to explain why the end point of the would be difficult to judge accurately using an indicator.	is reaction [2 marks]
0 6 . 3	The pH at the end point of this reaction is 11.8	
	Use this pH value and the ionic product of water, $K_{\rm w} = 1.0 \times 10^{-14} \rm mol^2 dm^{-6}$, calculate the concentration of hydroxide ions at the end point of the reaction.	to [3 marks]
	Concentration =	_ mol dm ⁻³
	Question 6 continues on the next page	

0 6 . 4 The expression for the acid dissociation constant for aqueous ammonium ions is	
$K_{a} = [NH_{\underline{3}}][H^{\pm}]$ $[NH_{4}^{+}]$	
The initial concentration of the ammonium chloride solution was 2.00 mol dm ⁻³ .	
Use the pH of this solution, before any sodium hydroxide had been added, to calculate a value for K_a	te
[3 mark	s]
\mathcal{K}_{a} = mol dn	n^{-3}
0 6 . 5 A solution contains equal concentrations of ammonia and ammonium ions.	
Use your value of $K_{\rm a}$ from Question 6.4 to calculate the pH of this solution. Explain your working.	
(If you were unable to calculate a value for K_a you may assume that it has the value 4.75×10^{-9} mol dm ⁻³ . This is not the correct value.) [2 mark	s]
pH=	

Table 4 shows some successive ionisation energy data for atoms of three different 7 elements X, Y and Z.

Elements **X**, **Y** and **Z** are Ca, Sc and V but not in that order.


Table 4

	First	Second	Third	Fourth	Fifth	Sixth
X	648	1370	2870	4600	6280	12 400
Υ	590	1150	4940	6480	8120	10 496
Z	632	1240	2390	7110	8870	10 720

		First	Second	Third	Fourth	Fifth	Sixth
	X	648	1370	2870	4600	6280	12 400
	Υ	590	1150	4940	6480	8120	10 496
	Z	632	1240	2390	7110	8870	10 720
For questions For each answ		•	•	•		swer	
CORRECT METHOD		WRONG METHODS			propriate and		
If you want to If you wish to as shown.							
0 7 . 1	Which e	element is ca	lcium?				[1 mark]
	X	0					
	Y	0					
	Z	0					
0 7 . 2	Which 6	element is va	nadium?				[1 mark]
	X	0					
	Y	0					
	Z	0					

0 7 . 3	Justify your choice of vanadium in Question 7.2 [1 mark]
0 7 . 4	An acidified solution of NH ₄ VO ₃ reacts with zinc.
	Explain how observations from this reaction show that vanadium exists in at least two different oxidation states. [2 marks]
	Question 7 continues on the next page

0 7 . 5	The vanadium in 50.0 cm 3 of a 0.800 mol dm $^{-3}$ solution of NH $_4$ VO $_3$ reacts with 506 cm 3 of sulfur(IV) oxide gas measured at 20.0 °C and 98.0 kPa.
	Use this information to calculate the oxidation state of the vanadium in the solution after the reduction reaction with sulfur(IV) oxide. Explain your working. The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$. [6 marks]
	Oxidation state =

0 8 . 1	A co-ordinate bond is formed when a transition metal ion reacts with a ligand.	
	Explain how this co-ordinate bond is formed.	orkol
	į z m	arks]
0 8 . 2	to excess, to an aqueous solution containing copper(II) ions.	se,
	Write equations for the reactions that occur. [4 mag)	arks]

0 8 . 3	When the complex ion $[Cu(NH_3)_4(H_2O)_2]^{2+}$ reacts with 1,2-diaminoethane, the ammonia molecules but not the water molecules are replaced.
	Write an equation for this reaction. [1 mark]
0 8 . 4	Suggest why the enthalpy change for the reaction in Question 8.3 is approximately zero. [2 marks]
0 8 . 5	Explain why the reaction in Question 8.3 occurs despite having an enthalpy change that is approximately zero. [2 marks]
	Turn over for the next question

9	A 5.00 g sample of potassium chloride was added to 50.0 g of water initially at 20.0°C . The mixture was stirred and as the potassium chloride dissolved, the temperature of the solution decreased.
0 9 . 1	Describe the steps you would take to determine an accurate minimum temperature that is not influenced by heat from the surroundings. [4 marks]
0 9 . 2	The temperature of the water decreased to 14.6 °C. Calculate a value, in kJ mol ⁻¹ , for the enthalpy of solution of potassium chloride.
	You should assume that only the 50.0 g of water changes in temperature and that the specific heat capacity of water is 4.18 J $\rm K^{-1}g^{-1}$. Give your answer to the appropriate number of significant figures. [4 marks]
	Enthalpy of solution =kJ mol ⁻¹

The enthalpy of solution of calcium chloride is $-82.9 \text{ kJ mol}^{-1}$. The enthalpies of hydration for calcium ions and chloride ions are -1650 and -364 kJ mol^{-1} , respectively. Use these values to calculate a value for the lattice enthalpy of dissociation of calcium chloride.	marks]
Explain why your answer to Question 9.3 is different from the lattice enthalpy of dissociation for magnesium chloride.	J mol ⁻¹

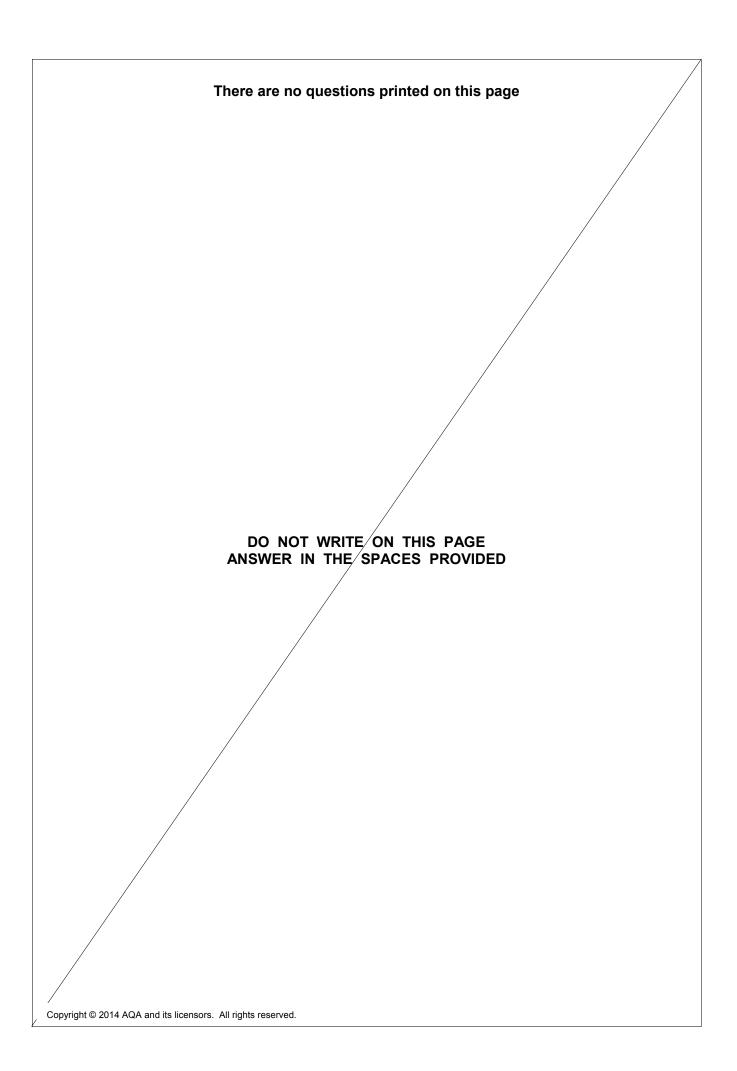

Table 5 shows observations of changes from some test-tube reactions of aqueous solutions of compounds **Q**, **R** and **S** with five different aqueous reagents. The initial colours of the solutions are not given.

Table 5

	BaCl ₂ + HCl	AgNO ₃ + HNO ₃	NaOH	Na ₂ CO ₃	HCl (conc)
Q	no change observed	pale cream precipitate	white precipitate	white precipitate	no change observed
R	no change observed	white precipitate	white precipitate, dissolves in excess of NaOH	white precipitate, bubbles of a gas	no change observed
s	white precipitate	no change observed	brown precipitate	brown precipitate, bubbles of a gas	yellow solution

	Identify each of compounds Q , R and S . You are not required to explain your answers.	[6 marks]
lo	dentity of Q	
- Id	dentity of R	
- J:	dentity of S	

10.2	Write ionic equations for each of the positive observations with S .	[4 marks]
	END OF QUESTIONS	

