

Accredited

AS Level Biology A H020/01 Breadth in biology Sample Question Paper

Date - Morning/Afternoon Version 2.2

Time allowed: 1 hour 30 minutes

You may use:					
a scientific or graphical calculator					

First name	
Last name	
Centre number	Candidate number

INSTRUCTIONS

- Use black ink. You may use an HB pencil for graphs and diagrams.
- Complete the boxes above with your name, centre number and candidate number.
- · Answer all the questions.
- · Where appropriate, your answers should be supported with working. Marks may be given for a correct method even if the answer is incorrect.
- Write your answer to each question in the space provided.
- · Additional paper may be used if required but you must clearly show your candidate number, centre number and question number(s).
- Do not write in the bar codes.

INFORMATION

- The total mark for this paper is 70.
- The marks for each question are shown in brackets [].
- This document consists of 24 pages.

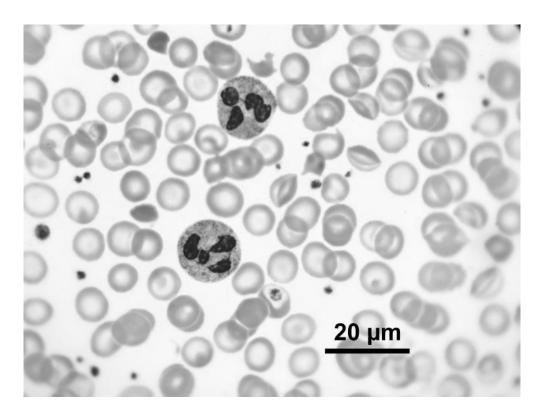
2

Section A

You should spend a maximum of 25 minutes on this section.

Answer **all** the questions.

1	Youn	g mammals receive antibodies in their mother's milk.	
	This i	s an example of which type of immunity?	
	A	artificial active immunity	
	В	artificial passive immunity	
	C	natural active immunity	
	D	natural passive immunity	
	Your	answer	[1]
2	Which	n of the following descriptions is correct?	
	A	Vaccination gives long-term protection, immunisation gives short-term protection.	
	В	Vaccination involves injection of antigenic material and immunisation is the process of developing immunity.	
	C	Vaccination involves injection of antigenic material, immunisation is injection of antibodies	
	D	Vaccination and immunisation have the same meaning.	
	Your	answer	[1]
3	When	you listen to a human heartbeat through a stethoscope you can hear a two stage 'lub-dub'	
	Which	n of the following causes the first 'lub' component?	
	A	closing of the atrioventricular valves	
	В	sound of blood rushing into the atria	
	C	sound of blood rushing into the ventricles	
	D	closing of semilunar valves	
	Your	answer	[1]


4 Zinc ions are necessary for the enzyme carbonic anhydrase to work.

Which statement correctly describes the nature and function of zinc ions in their interaction with carbonic anhydrase?

- A inorganic ions and coenzymes
- **B** vitamins and prosthetic groups
- C inorganic ions and prosthetic groups
- **D** vitamins and coenzymes

Your answer [1]

Using the light micrograph below and the formula $\frac{4}{3}\pi r^3$ what is the volume of a neutrophil?

- \mathbf{A} 2 μ m³
- \mathbf{B} 20 μm^3
- $\textbf{C} \qquad 200 \ \mu\text{m}^3$
- **D** $2000 \, \mu m^3$

Your answer [1]

6 Three types of microscope are listed below.

Select the row that shows the correct use for each type of microscope.

	Type of microscope and what it is used to observe				
	Light microscope	Transmission electron microscope	Laser scanning confocal microscope		
A	an object at a certain depth within a cell	cell surfaces	organelles		
В	an object at a certain depth within a cell	cell surfaces	whole cells and tissues		
С	whole cells and tissues	organelles	cell surfaces		
D	whole cells and tissues	organelles	an object at a certain depth within a cell		

Your answer	[1]

7 Cyanobacteria are photoautotrophs and fossil records confirm their existence 3.5 billion years ago.

Which row describes the structure of cyanobacteria?

	Feature					
	Nucleus	Circular DNA	Mitochondria	Ribosomes	Chloroplast	Cell wall
A	√		✓		√	
В			√		√	✓
С	√	√		✓		
D		√		√		✓

Your answer			[1]
1001 0115 01			[-]

Fig. 8.1 shows an animal cell.

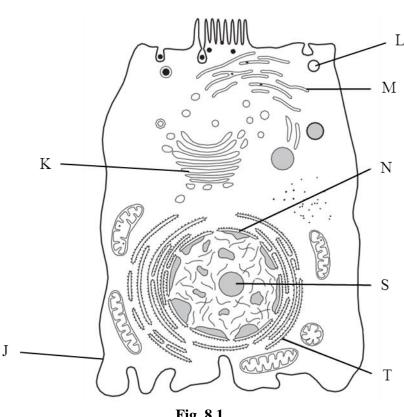


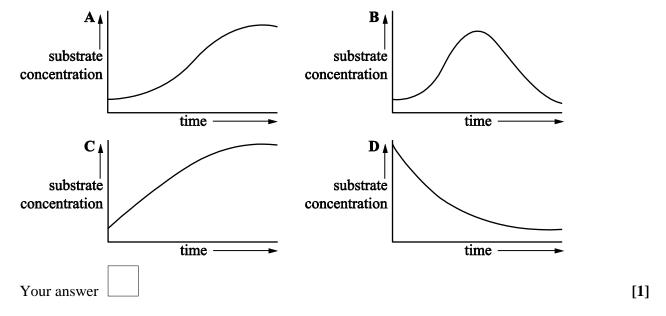
Fig. 8.1

Which option describes the correct sequence of organelles involved during the production and secretion of a protein from this cell?

S, K, L, J T, K, L, J T, M, L, J S, T, K, L A В \mathbf{C} D

Your answer [1]

9 A length of DNA has the base sequence AATCGCGGTCGCTCA.


Select the row that shows the correct complementary DNA strand and the sequence of mRNA made during transcription of the DNA sequence above.

	Complementary DNA sequence	mRNA sequence
A	AATCGCGGTCGCTCA	UUAGCGCCAGCGAGU
В	TTAGCGCCAGCGAGT	UUAGCGCCAGCGAGU
С	TTAGCGCCAGCGAGT	TTAGCGCCAGCGAGT
D	TTAGCGCCAGCGAGT	AAUCGCGGUCGCUCA

Your answer [1]

10 A group of students monitored the **substrate** concentration during an enzyme-controlled reaction.

Select the graph that correctly shows how the substrate concentration changes during the course of the reaction.

11 There are two types of nuclear division, mitosis and meiosis. Meiosis incorporates two divisions of the nucleus.

Which table shows the correct results of nuclear division?

A	Genetic variation	Reduction division
Mitosis	×	×
Meiosis 1	√	√
Meiosis 2	×	×

C

	Genetic variation	Reduction division
Mitosis	*	√
Meiosis 1	✓	×
Meiosis 2	✓	√

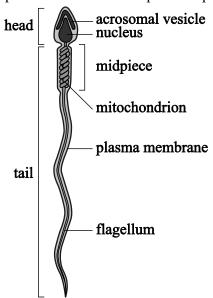
В

	Genetic variation	Reduction division
Mitosis	*	×
Meiosis 1	√	√
Meiosis 2	√	×

D

	Genetic variation	Reduction division
Mitosis	*	×
Meiosis 1	✓	✓
Meiosis 2	*	✓

Your answer	[1]


- 12 The following events occur when carbon dioxide enters an erythrocyte in a capillary.
 - 1. Hydrogencarbonate ions diffuse into the plasma from the erythrocyte.
 - 2. Dissociation of carbonic acid.
 - 3. Carbon dioxide reacts with water forming carbonic acid.
 - 4. Chloride ions diffuse into erythrocyte from plasma.

In which sequence do they occur?

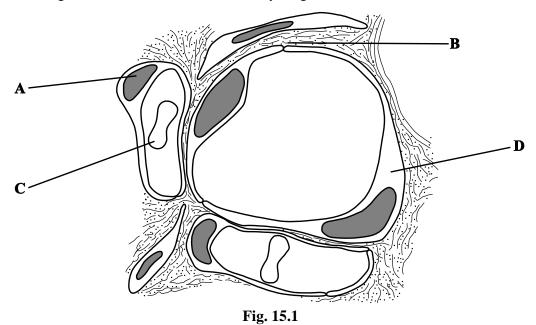
	First step			→ Final step
A	2	4	1	3
В	3	2	1	4
С	3	1	4	2
D	2	3	4	1

Your answer		[1]

13 Sperm cells are an example of a specialised cell.

Which statement correctly describes one specialisation of a sperm cell?

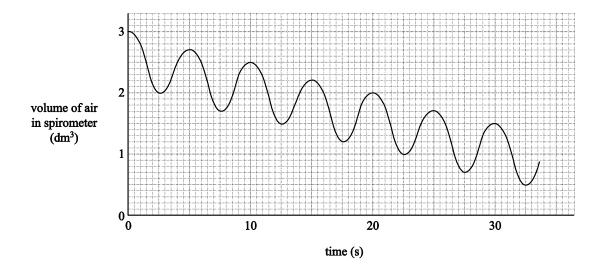
- A tail contains flagellum which generates ATP
- **B** head contains chromosomes in homologous pairs
- C acrosome contains enzymes to digest outer portion of egg
- **D** midpiece contains mitochondria which enter egg


Your answer [1]

- Which of the following statements correctly describes the mechanism behind water movement between plasma and tissue fluid at the venule end of a capillary?
 - **A** The hydrostatic pressure is greater than the oncotic pressure so water moves out of the capillary.
 - **B** The hydrostatic pressure is greater than the oncotic pressure so water moves into the capillary.
 - C The oncotic pressure is greater than the hydrostatic pressure so water moves out of the capillary.
 - **D** The oncotic pressure is greater than the hydrostatic pressure so water moves into the capillary.

Your answer [1]

Emphysema is a chronic respiratory disease where elastase is produced by phagocytes in the lungs, which breaks down lung tissue. This means that a person with emphysema cannot fully exhale.


Fig. 15.1 is a diagram of a small section of a healthy lung.

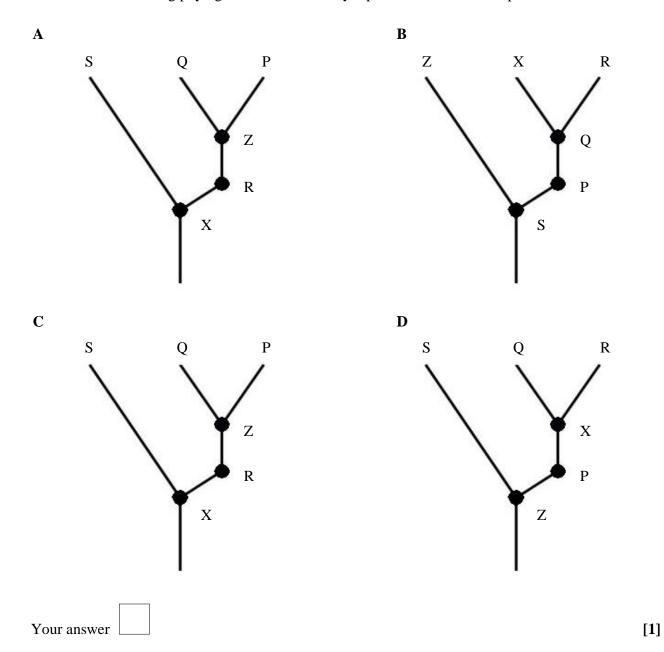
Which label shows the area of lung tissue that is broken down by elastase?

Your answer [1]

16 The following spirometer trace shows the results of an experiment. Soda lime was used to extract carbon dioxide from exhaled air.

What is the rate of oxygen consumption in the experiment?

A $1.0 \, \text{dm}^3$ **B** $3.0 \, \text{dm}^3 \, \text{min}^{-1}$ **C** $5.0 \, \text{dm}^3 \, \text{min}^{-1}$ **D** $12 \, \text{breaths min}^{-1}$ Your answer [1]


17 Q, P, R and S are related species of organisms.

Species X is an extinct recent common ancestor of species Q and R.

X, Q and R all evolved from species P.

Species S is the least related to the others, with extinct species Z being its most recent phylogenetic link to the other species.

Which of the following phylogenetic trees correctly represents the relationships described above?

18

19

Which of the following formulae of fatty acids represents a saturated fatty acid?				
Statement 1: Palmitic acid, C ₁₅ H ₃₁ COOH				
Statement 2:	Oleic acid, C ₁₇ H ₃₃ COOH			
Statement 3:	Linoleic acid, C ₁₇ H ₃₁ COOH			
A 1, 2 and	3			
B Only 1 a	nd 2			
C Only 2 a	nd 3			
D Only 1				
Your answer	[1]			
-	A chemical produced by a metabolic pathway binds to the initial enzyme in the pathway. The chemical binds to the enzyme at a site away from the active site and inhibits the enzyme action.			
Which of the fo	llowing statements about the mode of action of the chemical is/are correct?			
Statement 1:	It is an end product inhibitor.			
Statement 2:	It is a competitive inhibitor.			
Statement 3:	It binds to the allosteric site of the enzyme.			
A 1, 2 and 3				
B Only 1 and 2				
C Only 1 and 3				
D Only 1	D Only 1			
Your answer [1]				

Your answer

20	The following statements refer to the movement of water from the cortex of the root into the xylem.		
	Which	n of the fol	lowing statements is/are true?
	State	ment 1:	Most of the water moves across the root cortex by the apoplast pathway.
	State	ment 2:	At the endodermis water has to enter the symplast pathway.
	State	ment 3:	Casparian strips in the endodermis contain the chemical callose.
	A	1, 2 and 3	3
	В	Only 1 an	nd 2
	C	Only 1 an	nd 3
	D	Only 1	

[1]

Section B

Answer **all** the questions.

- 21 Transmembrane proteins are involved in the transport of sugars across the plasma membrane.
 - (a) Glucose can be moved into cells by facilitated diffusion using proteins called GLUT proteins. These proteins expose a single binding site on one side of the membrane. Glucose binds to this site and causes a change in the shape of the protein. This change moves the glucose across the membrane and releases it on the other side.

(i)	Explain why facilitated diffusion via GLUT proteins requires no metabolic energy.	
		•••••
		• • • • • •
		•••••
		[2]
(ii)	Glucose can also be absorbed by an active process which requires metabolic energy. What is the immediate source of this energy in cells?	
		[1]
(iii)	Explain why glucose cannot pass through a cell membrane by simple diffusion.	
		•••••
		•••••
		•••••
		[2]

(b) A student investigated the effect of alcohol on the permeability of membranes in plant cells. The student wanted to find the minimum concentration of alcohol at which all the cells became permeable to the stain Evans Blue. Evans Blue stains the nucleus of the cell.

The student followed this method:

- The student placed samples of onion epidermis into different concentrations of ethanol.
- After five minutes a few drops of Evans Blue stain was added to each sample.
- After a further five minutes, the samples were viewed using a light microscope.
- The student observed 20 cells and recorded how many contained a blue nucleus.

Table 21.1 shows the student's results.

Concentration of ethanol (%)	Number of cells with a blue nucleus	% cells with blue nucleus
0	1	5
10	4	20
20	16	80
30	20	100
40	20	100

Table 21.1

(i)	Identify one limitation of the method the student followed.	
		•••••
		[1]
(ii)	On evaluating the results the student decided to use a narrower range of ethanol concentrations.	
	Suggest what range of ethanol concentrations the student should use and give a reason for choice.	your
		•••••
	•••••••••••••••••••••••••••••••••••••••	•••••
	••••••	[2]
(iii)	How would using a narrower range of alcohol concentrations improve the investigation?	
		•••••
		[1]

Fig. 22.1 shows a transverse section of the stem of a typical pondweed viewed using a $\times 10$ objective lens. Part of a graticule is shown below the stem. The markings on the graticule are 0.1 mm apart.

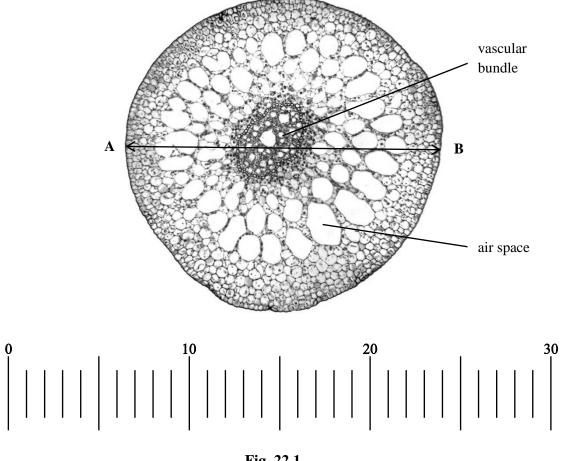


Fig. 22.1

(a) (i) Measure the width of the stem between points A and B. Give your answer to the nearest 0.1 mm.

· ·		
Anguar		
Answer	LI	ı

(ii) Calculate the magnification of the image in **Fig. 22.1**.

Answer	[2]	J	

The thin stem and thin cell walls do not provide much support for the leaf. Suggest how the (iii) leaf is supported.

[2]

(b) A student was asked to view cells from the phloem in transverse section using a high power objective lens. **Fig. 22.2** shows two diagrams of phloem tissue.

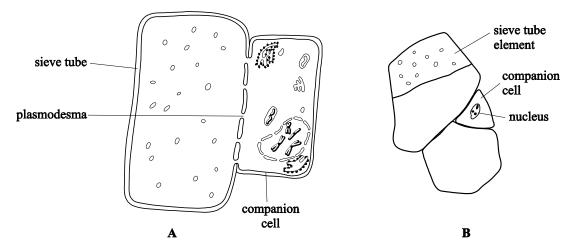


Fig. 22.2

(1)	Justify your decision using two separate features of the diagrams.	
		•••••
		•••••
		•••••
		[2]
(ii)	State what is meant by the <i>resolution</i> of a microscope.	
		•••••
		[1]

(iii) The slide viewed to draw the diagrams in Fig. 22.2 had been stained.

Table 22.1 shows a list of stains and the cell feature that can be stained.

Stain	Cell feature stained
Nile blue	nuclei
eosin	cytoplasm
Sudan red	cell membrane
iodine	starch

Table 22.1

which stain had the student used? Explain your answer.	
	• • • •
	• • • •
	••••
	[2

23	The thing	concept of molecules with complementary shapes can be used to explain many processes in living gs.				
	(a)	Con	aplete the following passage about the mechanism of enzyme action.			
		Enz	ymes are proteins which speed up the rate of biological reactions. They form an			
			by binding to their substrate at a site known as the			
			structure of the protein molecule. This means that			
		each	enzyme can bind to only one type of substrate molecule.			
		This	is explained by the lock and key hypothesis. In an alternative hypothesis, the binding site			
		char	ges shape to fit more closely around the substrate molecule. This is called the			
		how	enzymes enable reactions to occur at lower temperatures by reducing the			
			required for the reaction to occur.			
	(b)		ther molecule that relies on a specific shape to bind to a specific compound is an antibody. 23.1 shows the generalised structure of an antibody.			
		(:)	Fig. 23.1			
		(i)	Draw a ring on Fig. 23.1 to show a part of the molecule that has a shape complementary to the shape of an antigen.			
		(ii)	The component labelled Y on the antibody is a bond.			
			State what type of bond is found here and give its function.			
			[2]			

(c)	system makes antibodies against these proteins. As a result the proteins clump together. These clumps stick to surfaces such as the blood vessel walls and cause fatigue, joint pain and skin rashes.					
	(i)	What is meant by the term autoimmune disease?				
			•••••			
			•••••			
			•••••			
			[2]			
	(ii)	Suggest why antibodies specific to nuclear proteins are not normally made.				
			•••••			
			[1]			
(d)	Scientists often use natural substances to help them develop specific new medicines.					
	State two possible sources of such natural substances.					
	••••		•••••			
	••••		[2]			

24	(a)	The cassowary is a large, flightless bird found in the rainforest in parts of Australia. It feeds mainly on fruit. The seeds of the fruit are deposited on the rainforest floor.				
		(i)	The cassowary is known as a <i>keystone species</i> . This means it is important for the survival of other species.			
			Suggest what role the cassowary plays in the survival of other species.			
			[1]			
		(ii)	The cassowary needs to be conserved for ecological reasons.			
			State two other reasons for maintaining biodiversity.			
			1			
			2			
			[2]			
	(b)	Man mon	mountain gorilla is an endangered species with as few as 880 individuals surviving in the wild. y of the animals have been 'habituated' to human contact. The health of these animals is itored and medical assistance is given when necessary. Animals that are not habituated are y visited.			
		(i)	Suggest one advantage and one disadvantage of keeping some gorilla families that have not been habituated.			
			[2]			

The gorilla population in one area, Virunga, has been regularly monitored (Table 24.1). The data have been collected by indirect methods such as collecting dung samples at nest sites. However, DNA analysis of another gorilla population suggests that estimates made by these indirect methods may be up to 6% inaccurate.

Year	Population in Virunga
1981	254
1989	320
2003	380
2010	480

Table 24.1

Calculate the mean annual percentage rate of growth of the gorilla population in Virunga between 1981 and 2010.

	Answer% [2]
(iii)	In 1993 the Rio Convention on Biodiversity came into force. In 2010, one conservationist commented that the Rio Convention had had a real effect on the gorilla population.
	Use the information above to evaluate the effect that the Rio Convention on Biodiversity has had on the gorillas in Virunga.
	[3]

25 Fig. 25.1 shows a potometer.

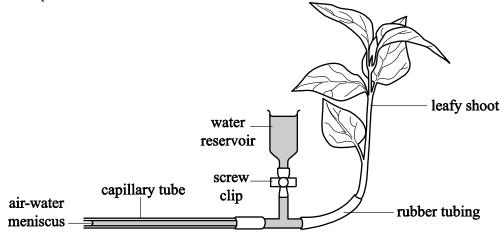
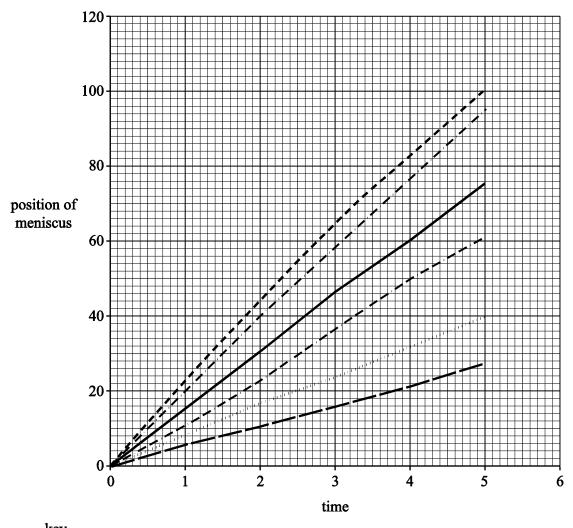


Fig. 25.1


(a) A student used this apparatus to investigate the role of stomata in transpiration. The student noted the position of the air—water meniscus each minute for five minutes.

The student then covered the underside of one of the leaves in petroleum jelly before repeating the measurements. This was continued until the undersides of all the leaves had been covered. **Table 25.1** shows the results.

Number of leaves	Position of meniscus (mm) at						
with undersides covered in petroleum jelly	0 min	1 min	2 min	3 min	4 min	5 min	
0	0	23	44	65	84	102	
1	0	20	40	58	77	95	
2	0	16	31	47	61	76	
3	0	11	23	37	50	62	
4	0	9	17	24	32	40	
5	0	6	11	16	22	28	

Table 25.1

The student presented these results as a graph. Fig. 25.2 shows the graph.

key
---- 0 leaves covered
---- 1 leaves covered
---- 2 leaves covered
---- 3 leaves covered
---- 4 leaves covered
---- 5 leaves covered

(i)

Fig. 25.2

State two different types of information the student has missed from the graph.

......[2]

Use the graph to calculate the minimum rate of transpiration.

(b)	Answer	[2]
(c)	Suggest two possible sources of error in this investigation.	[2]
		[2]

END OF QUESTION PAPER

Copyright Information:

Q8: Drawing of animal cell © OCR copyright

Q17: Drawing of phylogenetic tress © OCR copyright

Q22: Picture of pond weed © Dr Keith Wheeler/Science photo library

OCR is committed to seeking permission to reproduce all third-party content that it uses in the assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.